Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài trên sai. Đề đúng: CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{97}{98}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}\).
Bài 2:
\(E=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
\(\Leftrightarrow E=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}\)
\(\Leftrightarrow E=\dfrac{3.4.5...100}{2.3.4...99}\)
\(\Leftrightarrow E=\dfrac{\left(3.4.5...99\right).100}{2.\left(3.4...99\right)}\)
\(\Leftrightarrow E=\dfrac{100}{2}=50\)
Vậy ...
theo công thức (n-1)n(n+1)=n\(^3\)-n
\(\Rightarrow\) n\(^3\)=n+(n-1)n(n-1)
Ta có :
\(A=1^3+2^3+.....+100^3\)
\(\Rightarrow1+2+1\cdot2\cdot3+3+2\cdot3\cdot4+100+99\cdot100\cdot101\)\(=\left(1+2+3+...+100\right)+\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)\) =5050+101989800
=101994850
Bài 3: a) Xét A=(1+1/2+1/3+....+1/98).2.3.4.5.....98
=(1+1/2+1/3+....+1/98).(9.11).2.3.4.....98
=(1+1/2+1/3+....+1/98).99.2.3.4....98⋮99
(đpcm)
\(1^2-2^2+3^2-4^2+5^2-6^2+........+99^2-100^2\)
\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+........+\left(99^2-100^2\right)\)
\(=\left(1+2\right)\left(1-2\right)+\left(3+4\right)\left(3-4\right)+\left(5+6\right)\left(5-6\right)........+\left(99+100\right)\left(99-100\right)\)
\(=-1\left(1+2\right)+-1\left(3+4\right)+-1\left(5+6\right)+........+-1\left(99+100\right)\)
\(=-1\left[\left(1+2\right)+\left(3+4\right)+\left(5+6\right)+........+\left(99+100\right)\right]\)
\(=-1\left(3+7+11+........+199\right)\)
\(=-1.\left\{\dfrac{\left(199+3\right).\left[\left(199-3\right):4+1\right]}{2}\right\}\)
\(=-1.\left[\dfrac{202.\left(196:4+1\right)}{2}\right]\)
\(=-1.\left[\dfrac{202.\left(49+1\right)}{2}\right]\)
\(=-1.\dfrac{202.50}{2}\)
\(=-1.\dfrac{10100}{2}\)
\(=-1.5050\)
\(=-5050\)