Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt A = 1.2 + 2.3 + 3.4 + ...... + 2008.2009
<=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ...... + 2008.2009.3
<=> 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2008.2009.( 2010 - 2007 )
<=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 2008.2009.2010 - 2007.2008.2009
<=> 3A = 2008.2009.2010
=> A = ( 2008.2009.2010 ) : 3
1/1x2 + 1/2x3 + 1/3x4 + ... + 1/24x25
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/24 - 1/125
= 1 - 1/25
= 24/25
1/1.2 +1/2.3 +1/3.4 +....+1/99.100
=1-1/2+1/2-1/3+1/3-14+.....+1/99-1/100
=1-1/100
=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
= \(1-\frac{1}{2006}\)
= \(\frac{2005}{2006}\)
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức trên, ta có
\(\frac{1}{1.2}=\frac{1}{2-1}.\left(1-\frac{1}{2}\right)\)
\(\frac{1}{2.3}=\frac{1}{3-2}.\left(\frac{1}{2}-\frac{1}{3}\right)\)
............................................
\(\frac{1}{49.50}=\frac{1}{50-49}.\left(\frac{1}{49}-\frac{1}{50}\right)\)
\(A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)
chắc chắn bạn ạ, ai thấy đúng hì ủng hộ nha
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{50}=\frac{49}{50}\)\(\frac{49}{50}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vậy \(A=\frac{49}{50}\)
Chúc bạn học tốt ~
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1/1 - 1/50
= 49/50
1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2013*2014 + 1/2014*2015
= 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2013 - 1/2014 + 1/2014 - 1/2015
=1-1/2015
=2014/2015
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{n\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(=\frac{n}{n+1}\)
Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=1-\frac{1}{2009}=\frac{2008}{2009}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2008\cdot2009}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(=\frac{1}{1}-\frac{1}{2009}=\frac{2008}{2009}\)