Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/3*5+1/5*7+1/7*9+...+1/99*101
=1/3-1/5+1/5-1/7+...+1/99-1/101
=1/3-1/101
=98/303
A=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+..+\frac{1}{9999}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}=\frac{49}{303}\)
16/15 x 25/24 x 36/35 x.........x 10000/9999
=16 x 25 x 36......10000 / 15 x 24 x35 .....9999
= ( 4 x 4 ) x ( 5 x 5 ) x ( 6 x 6 ).........( 100 x 100 ) / ( 3 x 5 ) x ( 4 x 6 ) x ( 5 x 7 ) ........( 99 x 101 )
= ( 4 x 5 x 6 x..........100 ) x ( 4 x 5 x 6 ........... x100) / ( 3 x 4 x 5 x 99 ) x ( 5 x 6 x 7.........x 101 )
= 100 x 4 / 3 x 101
= 400/ 303
Hãy k cho mình nha
Bằng 80000/69993
Mình ko chắc nữa số hơi to ( nếu đúng k cho mình nha ✔
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)
A= \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)
2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)
2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)+ \(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)
2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)
2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)
2.A= \(\frac{98}{303}\)
A = \(\frac{98}{303}\) : 2
A = \(\frac{49}{303}\)
Vay A=\(\frac{49}{303}\)
= 1/(3x5) + 1/(5x7) + 1/(7x9) +.....+ 1/(99x101) =( 1/3 -1/5 + 1/5 -1/7 +1/7 - 1/9 +....+ 1/99 -1/101 ) :2 = (1/3 -1/101) : 2 = 98/303 : 2 = 49/303
1/3 + 1/15 + 1/35 + 1/63 + 1/99 + 9999
= 1/3 + ( 1/5 + 1/35 + 1/63 ) + 1/99 = 9999
= 1/3 + 1111/9999 + 1/99
= 3333/9999 + 1111/9999 +101/9999
= 4545/9999
Đặt \(B=\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)
\(\Leftrightarrow B=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(\Leftrightarrow2B=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{13}\right)=1-\frac{3}{13}=\frac{10}{13}\)
\(\Leftrightarrow A=1+\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}=1+\frac{10}{13}=\frac{23}{13}\)
49/303
Tick cho mình nha bạn