Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x + 2 = 5
rút gọn ta được : 1 - 1/x+2 = 5
<=> x + 2 - 1 / x+ 2
<=> x + 1 / x + 2 = 5
<=> x+ 1 = 5x + 10
<=> - 4x = 9
<=> x = -9/4
B) / x +4/ = 2^0 + 1 ^ 2013
=> /x + 4/ = 1 + 1
=> / x + 4 / = 2
TH 1 : x+ 4 = 2
=> x = 2 - 4 = -2
TH2 : x + 4 = -2
=> x = -2 - 4 = -6
=> x = { - 2 , -6 }
a) pt => 2x-x=-25+5(chuyển vế đổi dấu) =>x=-20
b)pt=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\)=\(\frac{2016}{2017}\)
=>\(1-\frac{1}{2x+1}=\frac{2016}{2017}\)=>\(\frac{2x}{2x+1}=\frac{2016}{2017}\). Nhân chéo => x=1008
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)
\(=1-\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}\right)\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x\left(x+2\right)}=19\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+2}=19\)
\(\Leftrightarrow1-\frac{1}{x+2}=19\)
\(\Leftrightarrow\frac{x+2}{x+2}-\frac{1}{x+2}=19\)
\(\Leftrightarrow\frac{x+1}{x+2}=19\)
<=> 19(x + 2) = x + 1
<=> 19x + 38 = x + 1
=> 19x - x = 1 - 38
=> 19x = -37
=> x = \(-\frac{37}{19}\)
ĐK: \(x\ne0;x\ne2\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=19\)
\(\Leftrightarrow\)\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=19\)
\(\Leftrightarrow\)\(1-\frac{1}{x+2}=19\)
\(\Leftrightarrow\)\(\frac{1}{x+2}=-18\)
\(\Rightarrow\)\(x+2=-\frac{1}{18}\)
\(\Leftrightarrow\)\(x=-2\frac{1}{18}\)
Sửa đề: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2020}{2021}\) \(Đkxđ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x+2}{2021}=1\)
\(\Leftrightarrow x=2019\)
Vậy \(x=2019\)