Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2020}{2021}\) \(Đkxđ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x+2}{2021}=1\)
\(\Leftrightarrow x=2019\)
Vậy \(x=2019\)
a) Ta có
1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x + 2 = 5
rút gọn ta được : 1 - 1/x+2 = 5
<=> x + 2 - 1 / x+ 2
<=> x + 1 / x + 2 = 5
<=> x+ 1 = 5x + 10
<=> - 4x = 9
<=> x = -9/4
B) / x +4/ = 2^0 + 1 ^ 2013
=> /x + 4/ = 1 + 1
=> / x + 4 / = 2
TH 1 : x+ 4 = 2
=> x = 2 - 4 = -2
TH2 : x + 4 = -2
=> x = -2 - 4 = -6
=> x = { - 2 , -6 }
a) pt => 2x-x=-25+5(chuyển vế đổi dấu) =>x=-20
b)pt=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\)=\(\frac{2016}{2017}\)
=>\(1-\frac{1}{2x+1}=\frac{2016}{2017}\)=>\(\frac{2x}{2x+1}=\frac{2016}{2017}\). Nhân chéo => x=1008
=>2/1*3+2/3*5+...+2/(2x-1)(2x+1)=98/99
=>1-1/3+1/3-1/5+...+1/(2x-1)-1/(2x+1)=98/99
=>1-1/(2x+1)=98/99
=>1/(2x+1)=1/99
=>2x+1=99
=>x=49
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)
\(=1-\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}\right)\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)