K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

7 tháng 7 2015

Ta thấy: 
1/1 + 1/99 = (99+1)/(1.99)=100/(1.99) 
1/3 + 1/97 = (97+3)/(3.97)=100/(3.97) 
1/5 + 1/95 = (95+5)/(5.95)=100/(3.97) 
… 
1/97 + 1/3 = (3+97)/(97.3)=100/(97.3) 
1/99 + 1/1 = (1+99)/(99.1)=100/(99.1) 
=> 
1/(1.99)=(1/1+1/99)/100 
1/(3.97)=(1/3+1/97)/100 
… 
1/(99.1)=(1/99+1/1)/100 
------------------------------ cộng 2 vế của các đẳng thức trên. Ta được đẳng thức: 

1/(1.99) + 1/(3.97)+ 1/(5.95) +...+ 1/(97.3) + 1/(99.1 ) 
=[(1/1+1/99)+(1/3+1/99)+…+(1/99+1/1)]/1... 
=2(1+1/3+1/5+1/7…+1/99]/100 
=(1+1/3+1/5+1/7…+1/99]/50 
Vậy: 
A=(1+1/3+1/5+1/7+...+1/97+1/99) / [ 1/(1.99) + 1/(3.97)+ 1/(5.95) +...+ 1/(97.3) + 1/(99.1 ) ] 
A=(1+1/3+1/5+1/7+...+1/97+1/99)/[(1+1/3... 
A=50. 

7 tháng 7 2015

bạn nói là gnoo Mình Hoàng đúng ko

15 tháng 11 2017

50 nha                          

3 tháng 2 2019

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)

1 tháng 4 2018

\(Q=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2}{1.99}+\dfrac{2}{3.97}+...+\dfrac{2}{51.49}}\)

\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{\dfrac{100}{1.99}+\dfrac{100}{3.97}+...+\dfrac{100}{51.49}}\)

\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{\dfrac{1+99}{1.99}+\dfrac{3+97}{3.97}+...+\dfrac{51+49}{51.49}}\)

\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{\dfrac{1}{99}+1+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{51}+\dfrac{1}{49}}\)

\(Q=\dfrac{50(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99})}{1+\dfrac{1}{3}+...+\dfrac{1}{99}}\)

\(\Rightarrow Q=50\)

27 tháng 3 2019