K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2023

https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-1-1-2-3-1-2-3-4-1-n-n-1-n-2--faq240420.html

`->` Mình tham khảo ở đây để làm nếu sai thì cho mik xl ạ.

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)

\(2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\\ 2A=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)}-\dfrac{1}{\left(n-1\right)\cdot n}\)

\(2A=\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)}\)

\(A=\dfrac{1}{4}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)\cdot2}\)

 

 

9 tháng 9 2023

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\right)\)

\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right]\)

\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)n}\right]\)

\(=\dfrac{1}{2}\cdot\left[\dfrac{n\left(n-1\right)}{2n\left(n-1\right)}-\dfrac{2}{2n\left(n-1\right)}\right]\)

\(=\dfrac{1}{2}\cdot\dfrac{n\left(n-1\right)-2}{2n\left(n-1\right)}\)

\(=\dfrac{n^2-n-2}{4n\left(n-1\right)}\)

#\(Toru\)

24 tháng 9 2021

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

24 tháng 9 2021

cau a thi sao ha ban ? 

13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

30 tháng 5 2018

\(S_n=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(2S_n=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(2S_n=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(2S_n=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(S_n=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

30 tháng 5 2018

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

23 tháng 2 2017

Ta có: \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)

\(\Rightarrow x=\frac{23}{11}\)

23 tháng 2 2017

Đặt A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)

    2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\)

    2A=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}\) \(+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\)

    2A=\(\frac{1}{1.2}-\frac{1}{9.10}\)

    2A=\(\frac{22}{45}\)

      A=\(\frac{22}{45}\div2\)

      A=\(\frac{11}{45}\)

\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)

             \(x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)

Vậy x=\(\frac{23}{11}\)

7 tháng 5 2018

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

8 tháng 5 2018

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

30 tháng 9 2018

Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )

         S = (50+1) x 50 : 2 = 1275