K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

thấy công thức trên vào biểu thức, khử liên tiếp, ta con

1-1/50  <1

16 tháng 4 2017

Ta cộng vào biểu thức trên( đặt là A) 1 dãy là:1/2*3+1/4*5+1/6*7+...+1/47*48.(đặt là B).

=>A+B>A.

Ta có:A+B= 1/1*2+1/2*3+1/3*4+1/4*5+...+1/49*50.

=>A+B=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50.

=>A+B=1-1/50.

=>A+B<.

Mà A+B>A=>A<1.

Vậy A<1.

tk nha đúng 1000000% .

-chúc các bạn tk mk học giỏi nha-

11 tháng 4 2023

A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\)+....+ \(\dfrac{1}{49.50}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)\(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)

A = 1 - \(\dfrac{1}{50}\) < 1

A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\)+.....+ \(\dfrac{1}{49.50}\) < 1 ( đpcm)

1 tháng 5 2016

đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}<1\)

vậy A<1

1 tháng 5 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50

1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

1 - 1/50 < 1

21 tháng 4 2016

Ta có:

\(M=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)

\(M=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=N\)

\(\Rightarrow\frac{M}{N}=1\)

11 tháng 4 2021

undefined

A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{49}-\dfrac{1}{50}\)

  =\(\dfrac{1}{1}-\dfrac{1}{50}\)=\(\dfrac{49}{50}\)

10 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

=> đpcm

Ủng hộ mk nha ^_-

10 tháng 7 2016

đpcm là j z ạ