Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\)+....+ \(\dfrac{1}{49.50}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A = 1 - \(\dfrac{1}{50}\) < 1
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\)+.....+ \(\dfrac{1}{49.50}\) < 1 ( đpcm)
đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}<1\)
vậy A<1
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
1 - 1/50 < 1
Ta có:
\(M=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(M=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}\right)\)
\(M=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=N\)
\(\Rightarrow\frac{M}{N}=1\)
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{49}-\dfrac{1}{50}\)
=\(\dfrac{1}{1}-\dfrac{1}{50}\)=\(\dfrac{49}{50}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
=> đpcm
Ủng hộ mk nha ^_-
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
thấy công thức trên vào biểu thức, khử liên tiếp, ta con
1-1/50 <1
Ta cộng vào biểu thức trên( đặt là A) 1 dãy là:1/2*3+1/4*5+1/6*7+...+1/47*48.(đặt là B).
=>A+B>A.
Ta có:A+B= 1/1*2+1/2*3+1/3*4+1/4*5+...+1/49*50.
=>A+B=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50.
=>A+B=1-1/50.
=>A+B<.
Mà A+B>A=>A<1.
Vậy A<1.
tk nha đúng 1000000% .
-chúc các bạn tk mk học giỏi nha-