Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
Bài 3:
= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99
= 1- 1/99
= 98/99
Bài 4:
= 1/2*3 + 1/3*4 + 1/4*5 +...+ 1/10*11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11
= 1/2 - 1/11= 9/22
B=3/2x4/3x...........x2018/2017
=3x4x5x...........x2018/2x3x2x2x............x2017
=2x2018
=4036
A,C tương tự
Ta có:
A = 1 + 3 + 5 + 7 +... + 101
A = \(\frac{102.51}{2}=2601\)
M = 16 - 18 + 20 - 22 + 24 - 26 + .. + 64 - 66 + 68
M = ( 16 - 18 ) + ( 20 - 22 ) + ( 24 - 26 ) + ... + ( 64 - 66 ) + 68
M = (- 2 + - 2 + -2 + ... + - 2 ) + 68
M = 25/2 . ( - 2 ) + 68
M = -25 + 68
M = 43
H = ( 1 + 2 + 3 +...+ 99 ) x ( 13 x 15 - 12 x 15 - 15 )
H = ( 1 + 2 + 3 +...+ 99 ) x { (13 - 12 - 1) x 15 }
H = ( 1 + 2 + 3 +...+ 99 ) x 0
H = 0
G = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + 13 + 14 - ... + 301 + 302
G = ( 1 + 2 ) + ( -3 - 4 ) + ( 5 + 6 ) + ( -7 - 8 ) + ( 9 + 10 ) + ( - 11 - 12 ) + ( 13 + 14 ) -...+ ( 301 + 302 )
G = ( 3 - 7 ) + ( 11 - 15 ) + ( 19 - 23 ) + 27 - ... + 603
G = -4 + - 4 + -4 + 27 - ... + 603
G = 75 x ( -4 ) + 603
G = -300 + 603
G = 303
2.
a) 1 + 2 + 3 + 4 +...+ 99 + 100 + 2 x X = 5052
= > \(\frac{100.101}{2}\)+ 2 x X = 5052
= > 5050 + 2 x X = 5052
= > 2X = 2
= > X = 1
Bài 1:
a) [ (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) phần 1/2 - 1/3 + 1/4 - 1/5 ] : (1/4 - 1/6)
= [ (1/6 : 1/6) + (1/10 : 1/10) - (1/15 : 1/15) phần 30/60 - 20/60 + 15/60 - 12/60 ] : (3/12 - 2/12)
= [ 1 + 1 - 1 phần 13/60 ] : 1/12
= [ 1 : 13/60 ] x 12
= 60/13 x 12
=720/ 13
b) (3/20 + 1/2 - 1/15) x 12/49 phần 3 và 1/3 + 2/9
= (9/60 + 30/60 - 4/60) x 12/49 phần 10/3 + 2/9
= 7/12 x 12/49 phần 30/9 + 2/9
= 1/7 : 32/9
= 1/7 x 9/32
= 9/224