Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
\(21\left(x+3\right)^3:\left(3x+9\right)^2\)
\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)
\(=7\left(x+3\right):3\)
Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)
\(b)\)
Thay vào ta được:
\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)
\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)
\(=1^4:\left(1^3.1\right)\)
\(=1:1\)
\(=1\)
\(c)\)
Thay vào ta được:
\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)
\(=-6.10.7\)
\(=-420\)
Thay x=1,y=-2 vào đa thức A có:
49 - 14.1 +1^2 +2^2
=49-14+1+4
=40
Vậy........
1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN biểu thức trên là 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)
Dấu ''='' xảy ra khi x = 5
Vậy GTLN biểu thức trên là -5 khi x = 5
3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xayr ra khi x = 1/2
Vậy GTNN biểu thức là 3/4 khi x = 1/2
4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi x = -1/5
Vậy GTNN biểu thức trên là -1 khi x = -1/5
6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)
\(=-\left(x-4\right)^2+21\le21\)
Dấu ''='' xảy ra khi x = 4
Vậy GTLN biểu thức trên là 21 khi x = 4
Trả lời:
1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2
Vậy GTNN của bt = 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)
\(=-\left(x-5\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5
Vậy GTLN của bt = - 5 khi x = 5
3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5
Vậy GTNN của bt = - 1 khi x = - 1/5
4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của bt = 3/4 khi x = 1/2
5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)
\(=-\left(x-4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4
Vậy GTLN của bt = 21 khi x = 4