Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 12- (-4)= 16
b, 12- (-14)= 26
c, (-13)-(-5)=-8
d, (-2)-(-10)= 8
a)\(-17+\left|5-x\right|=10\)
\(\Leftrightarrow\left|5-x\right|=10-\left(-17\right)\)
\(\Leftrightarrow\left|5-x\right|=10+17\)
\(\Leftrightarrow\left|5-x\right|=27\)
\(\Leftrightarrow\orbr{\begin{cases}5-x=27\\5-x=-27\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-22\\x=32\end{cases}}\)
b) \(45-5\left|12-x\right|=125\div\left(-25\right)\)
\(\Leftrightarrow45-5\left|12-x\right|=-5\)
\(\Leftrightarrow5\left|12-x\right|=45-\left(-5\right)\)
\(\Leftrightarrow5\left|12-x\right|=45+5\)
\(\Leftrightarrow5\left|12-x\right|=50\)
\(\Leftrightarrow\left|12-x\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}12-x=10\\12-x=-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
c) \(2< \left|3-x\right|\le5\)
\(\Leftrightarrow\left|3-x\right|\in\left\{3;4;5\right\}\)
* \(\left|3-x\right|=3\Leftrightarrow\orbr{\begin{cases}3-x=3\\3-x=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
* \(\left|3-x\right|=4\Leftrightarrow\orbr{\begin{cases}3-x=4\\3-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}}\)
* \(\left|3-x\right|=5\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
d) \(\left|x+4\right|< 3\)
mà \(\left|x+4\right|\ge0\)
\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)
* \(\left|x+4\right|=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
* \(\left|x+4\right|=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}}\)
* \(\left|x+4\right|=2\Leftrightarrow\orbr{\begin{cases}x+4=2\\x+4=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-6\end{cases}}}\)
\(C=\left(x-5\right)^2+10\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow C=\left(x-5\right)^2+10\ge10\forall x\)
Dấu \("="\) xảy ra khi: \(x-5=0\Leftrightarrow x=5\)
Vậy \(Min_C=10\) khi \(x=5\).
\(B=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^9.33+3^9.15}{3^9.2^4}\)
\(=\frac{3^9\left(33+15\right)}{3^9.2^4}=\frac{3^9.48}{3^9.16}\)
\(=\frac{48}{16}=3\)
\(B=\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{3^{10}.\left(11+5\right)}{3^9.8}\)
\(=\frac{3^{10}.16}{3^9.8}\)
\(=\frac{3.2}{1}\)
\(=6\)
a) \(4^8\cdot4^4=\left(2^2\right)^8\cdot\left(2^2\right)^4=2^{16}\cdot2^8=2^{16+8}=2^{24}\)
b) \(5^{12}\cdot7-5^{11}\cdot10\)
\(=5^{11}\cdot\left(5\cdot7-10\right)=5^{11}\cdot\left(35-10\right)=5^{11}\cdot25\)
\(=5^{11}\cdot5^2=5^{11+2}=5^{13}\)
d) \(27^{16}:9^{10}\)
\(=\left(3^3\right)^{16}:\left(3^2\right)^{10}=3^{48}:3^{20}=3^{48-20}=3^{28}\)
e) \(125^3:25^4=\left(5^3\right)^3:\left(5^2\right)^4=5^9:5^8=5^{9-8}=5\)
f) \(24^4:3^4-32^{12}:16^{12}\)
\(=\left(24:4\right)^4-\left(32:16\right)^{12}\)
\(=6^4-2^{12}\)
\(=2^4\cdot\left(3^4-2^8\right)=2^4\cdot-175=-2800\)
\(\left(10^3+10^4+125^2\right):5^3=\left(2^3\times5^3+2^4\times5^4+5^6\right):5^3\)
\(=5^3\left(2^3+2^4\times5+5^3\right):5^3=2^3+2^4\times5+5^3=213\)