\(2x^4+ax^2+bx+c\text{⋮}x-2\)

cọn khi chia cho 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

22 tháng 10 2021

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)

12 tháng 2 2020

Từ đề bài ta có \(f\left(x\right)=A\left(x\right).\left(x-3\right)+2\Rightarrow f\left(3\right)=2\)

\(f\left(x\right)=B\left(x\right).\left(x+4\right)+9\Rightarrow f\left(-4\right)=9\)

\(f\left(x\right)=\left(x^2+3\right).\left(x^2+x-12\right)+\left(x^2+3\right).\left(ax+b\right)=\left(x^2+3\right).\left(x-3\right).\left(x+4\right)+\left(x^2+3\right).\left(ax+b\right)\left(1\right)\)Từ (1).Ta có \(f\left(3\right)=\left(3^2+3\right)\left(3a+b\right)=36a+12b\Rightarrow36a+12b=2\)

\(f\left(-4\right)=\left(\left(-4\right)^2+3\right)\left(-4a+b\right)=-76a+19b\Rightarrow-76a+19b=9\)

Giải hệ phương trình ẩn a,b ta tìm được a,b.Từ đó thế vào (1).Ta tìm được f(x)

20 tháng 12 2019

Áp dụng định lý Bezout ta có:
\(f\left(x\right)\)chia hết cho \(2x-1\Rightarrow f\left(x\right)=\left(2x-1\right)q\left(x\right)\)

                                                 \(\Rightarrow f\left(\frac{1}{2}\right)=0\left(1\right)\)

\(f\left(x\right)\)chia cho \(x-2\)dư 6\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+6\)

                                                  \(\Rightarrow f\left(2\right)=6\left(2\right)\)

Vì \(f\left(x\right)\)chia cho \(2x^2-5x+2\)được thương là \(x+2\)và còn dư nên

\(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+ax+b\)

         \(=\left(2x^2-4x-x+2\right)\left(x+2\right)+ax+b\)

         \(=\left[2x\left(x-2\right)-\left(x-2\right)\right]\left(x+2\right)+ax+b\)

        \(=\left(x-2\right)\left(2x-1\right)\left(x+2\right)+ax+b\)Kết hợp với (1) và (2) ta được:
\(\hept{\begin{cases}\frac{1}{2}a+b=0\\2a+b=6\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=4\\b=-2\end{cases}}\)

Vạy \(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+4x-2\)

4 tháng 10 2019

a) Ta có: \(g\left(x\right)=x^2-3x+2\)

                          \(=x^2-x-2x+2\)

                            \(=x\left(x-1\right)-2\left(x-1\right)\)

                           \(=\left(x-1\right)\left(x-2\right)\)

Vì \(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)

\(\Leftrightarrow-1+a+b=0\)

\(\Leftrightarrow a+b=1\left(3\right)\)

Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)

\(\Leftrightarrow-4+2a+b=0\)

\(\Leftrightarrow2a+b=4\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)

Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)

Các phần sau tương tự

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

11 tháng 11 2017

Gọi a(x) b(x) lần lượt là các thương của f(x) cho x-1 và x+2

f(x)=(x-1)a(x) + 4

f(1)=4

f(x)=(x+2)b(x) + 1

f(-2)=1

(x-1)(x+2) có bậc là 2=) đa thức dư có dạng cx+d

f(1)=(1-1)(1+2).5x2 +cx+d

     =c+d=4

f(-2)=(-2-1)(-2+2).5x2 +c.(-2)+d

       =d-2c=1

=)c+d-(d-2c)=c+d-d+2c=3c=3

=)c=1

=)d=3

Vậy đa thức dư của f(x) chia cho(x-1)(x+2) có dạng 1x+3 hay x+3

28 tháng 10 2019

Áp dụng định lý Bezout ta có:

\(P\left(x\right)\)chia cho x-2 dư 1 \(\Rightarrow P\left(2\right)=1\left(1\right)\)

\(P\left(x\right)\)chia cho x+1 dư 2 \(\Rightarrow P\left(-1\right)=2\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(x^2-x-2\)thì được thương 2x-1 và còn dư

\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\)

                  \(=\left(x^2+x-2x-2\right)\left(2x-1\right)+ax+b\)

                   \(=\left[x\left(x+1\right)-2\left(x+1\right)\right]\left(2x-1\right)+ax+b\)

                   \(=\left(x+1\right)\left(x-2\right)\left(2x-1\right)+ax+b\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}-a+b=2\\2a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{-1}{3}\\b=\frac{5}{3}\end{cases}\left(4\right)}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+1\right)\left(x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)