Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
b) Ta có: \(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(-5x+1\right)\)
c) Ta có: \(2x^2+7x+5\)
\(=2x^2+2x+5x+5\)
\(=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
d) Ta có: \(2x^2+3x-5\)
\(=2x^2+5x-2x-5\)
\(=x\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(2x+5\right)\left(x-1\right)\)
e) Ta có: \(x^3-3x^2+1-3x\)
\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
f) Ta có: \(x^2-4x-5\)
\(=x^2-4x+4-9\)
\(=\left(x-2\right)^2-3^2\)
\(=\left(x-2-3\right)\left(x-2+3\right)\)
\(=\left(x-5\right)\left(x+1\right)\)
g) Ta có: \(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)
h) Ta có: \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) Ta có: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
k) Ta có: \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=3x\left(x+2\right)\)
m) Ta có: \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
Bài 1.
A = 2x2 - x + 4 = 2( x2 - 1/2x + 1/16 ) + 31/8 = 2( x - 1/4 )2 + 31/8 ≥ 31/8 ∀ x
Dấu "=" xảy ra khi x = 1/4
=> MinA = 31/8 <=> x = 1/4
Bài 2.
A = -x2 + 3x + 2 = -( x2 - 3x + 9/4 ) + 17/4 = -( x - 3/2 )2 + 17/4 ≤ 17/4 ∀ x
Dấu "=" xảy ra khi x = 3/2
=> MaxA = 17/4 <=> x = 3/2
B = 3x2 + x - 5 = 3( x2 + 1/3x + 1/36 ) - 61/12 = 3( x + 1/6 )2 - 61/12 ≥ -61/12 ∀ x
Dấu "=" xảy ra khi x = -1/6
=> MinB = -61/12 <=> x = -1/6
C = x2 + 3/2x - 5 = ( x2 + 3/2x + 9/16 ) - 89/16 = ( x + 3/4 )2 - 89/16 ≥ -89/16 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MinC = -89/16 <=> x= -3/4
2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100
\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100
\(\Leftrightarrow\) 30x = -100 - 5
\(\Leftrightarrow\) x = - 3,5
4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0
\(\Leftrightarrow\) 2x2 + 10x + 21 = 0
---> Phương trình vô nghiệm
Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0
\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0
\(\Leftrightarrow\) 10x = - 29
\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)
Vậy phương trình có nghiệm.......
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
Câu 2 thì có thể tìm max:
$3x-2x^2+6=6-(2x^2-3x)=6-2(x^2-\frac{3}{2}x)$
$=\frac{57}{8}-2[x^2-2.x.\frac{3}{4}+(\frac{3}{4})^2]$
$=\frac{57}{8}-2(x-\frac{3}{4})^2\leq \frac{57}{8}$ do $(x-\frac{3}{4})^2\geq 0$ với mọi $x$
Vậy GTLN của biểu thức là $\frac{57}{8}$ khi $x=\frac{3}{4}$
Câu 1: Biểu thức câu 1 thì chỉ có thể tìm min thôi bạn nhé
Ta có:
$x^2+3x-5=x^2+2.\frac{3}{2}.x+(\frac{3}{2})^2-\frac{29}{4}$
$=(x+\frac{3}{2})^2-\frac{29}{4}\geq -\frac{29}{4}$ do $(x+\frac{3}{2})^2\geq 0$ với mọi $x$
Vậy GTNN của biểu thức là $\frac{-29}{4}$ khi $x=-\frac{3}{2}$
Câu 3 giống câu 1