K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a) Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\cdot10+2^{n+3}\cdot3⋮6\)

b) Ta có: \(4^{13}+32^5-8^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}\cdot5⋮5\)

c) Ta có: \(2014^{100}+2014^{99}\)

\(=2014^{99}\left(2014+1\right)\)

\(=2014^{99}\cdot2015⋮2015\)

a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a

                       = 1001a + 101b

                       = a . 91 . 11 + b . 11 . 10

                       = 11 . (a . 91 + b . 10) ⋮ 11

b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b

                           = a . 111000 + b . 111

                           = a . 37 . 3000 + b . 37 . 3

                           = 37 . (a . 3000 + b . 3) ⋮ 37

c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b

                           = a . 101010 + b . 10101

                           = a . 14430 . 7 + b . 1443 . 7

                           = 7 . (a . 14430 + b. 1443) ⋮ 7

d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)

                                  = a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a

                                  = a . 909 + b . (-909)

                                  = a . 909 - b . 909

                                  = a . 9 . 101 - b . 9 . 101

                                  = 9 . (a . 101 - b . 101)  ⋮ 9

21 tháng 9 2021

a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a

                       = 1001a + 101b

                       = a . 91 . 11 + b . 11 . 10

                       = 11 . (a . 91 + b . 10)  11

b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b

                           = a . 111000 + b . 111

                           = a . 37 . 3000 + b . 37 . 3

                           = 37 . (a . 3000 + b . 3)  37

c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b

                           = a . 101010 + b . 10101

                           = a . 14430 . 7 + b . 1443 . 7

                           = 7 . (a . 14430 + b. 1443)  7

d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)

                                  = a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a

                                  = a . 909 + b . (-909)

                                  = a . 909 - b . 909

                                  = a . 9 . 101 - b . 9 . 101

                                  = 9 . (a . 101 - b . 101)   9

 
7 tháng 12 2023

Bài 1:

a; (n + 4) \(⋮\) ( n - 1)  đk n ≠ 1

 n - 1 + 5  ⋮ n - 1

            5  ⋮ n - 1

n - 1     \(\in\) Ư(5) = {-5; -1; 1; 5}

\(\in\) { -4; 0; 2; 6}

 

7 tháng 12 2023

Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1

          n2 + 2n + 1 - 4 ⋮ n + 1

          (n + 1)2      -  4 ⋮ n + 1

                                4 ⋮ n + 1

           n + 1  \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}

           n  \(\in\)  {-5; -3; -2; 0; 1; 3}

           

20 tháng 10 2023

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.

27 tháng 7 2015

1. vì 53! và 51! đều chứa thừa số 29 nên 53! và 51! đều chia hết cho 29 => 53! - 51! : hết cho 29

2. a. aaabbb = 111000a + 111b 

vì 111000a và 111b đều chia hết cho 37 nên  111000a + 111b : hết cho 37 => aaabbb : hết cho 37

b. ababab = 10101 . ab mà 10101 : hết cho 7  => ababab : hết cho 7

8 tháng 6 2016

a, aaabbb = 111000a + 111b đều chia hết cho 37 nên 111000a + 111b chia hết cho 37 . Suy ra aaabbb chia hết cho 37

14 tháng 3 2017

a=1

b=2 h nha

14 tháng 3 2017

abba = a.1000+b.100+b.10+a = 1001a+110b 

1001 chia hết cho 11 suy ra 1001a chai hết cho a

110 chia hết cho 11 suy ra 110b chia hết cho 11

nên 1001a + 110 b chia hết cho 11

Vậy abba chia hết cho 11

b. aaabbb = 111000.a + 111 .b

ta có 111000 chia hết cho 37 suy ra 111000a chia hết cho 37

111 chia hết cho 37 suy ra 111b chia hết cho 37

suy ra 111000a+111.b chia hết cho 37

vậy aaabbb chia hết cho 37

c.ababab = 100000.a+10000.b+1000.a+100b+10.a+b

100000a+1000a+10a= 101010a

101010 chia hết cho 7 suy ra 101010a chia hết cho 7

10000b+100b +b= 10101b

10101 chia hết cho 7 suy ra 10101 b chia hết cho 7

nên 101010a+10101b chia hết cho 7

vậy ababab chia hết cho 7

21 tháng 2 2017

e có gach dau chu nhỡ người ta nghĩ là a.b.a.b thì sao sửa lại đi