Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ảnh ảo, cùng chiều và nhỏ hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\Rightarrow d'=\dfrac{36}{7}cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{12}{7}cm\)
a)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=24cm\)
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{8}{24}\Rightarrow h'=9cm\)
b)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{12}+\dfrac{1}{d'}\Rightarrow d'=12cm\)
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{12}{12}\Rightarrow h'=3cm\)
c)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{4}+\dfrac{1}{d'}\Rightarrow d'=-12cm\)
\(\Rightarrow TH\) không xảy ra.
d)\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{6}=\dfrac{1}{18}+\dfrac{1}{d'}\Rightarrow d'=9cm\)
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{3}{h'}=\dfrac{18}{9}\Rightarrow h'=1,5cm\)
Hình vẽ thì em tham khảo nhé!
Áp dụng công thức: \(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\) và độ cao ảnh \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
a) \(\dfrac{1}{6}=\dfrac{1}{8}+\dfrac{1}{d'}\Rightarrow d'=24cm\)
Độ cao ảnh: \(\dfrac{h}{h'}=\dfrac{8}{24}=\dfrac{1}{3}\)
Đề không cho độ cao vật nên chị làm đến đây, nếu có cho thì em thay vào h rồi tính h' là chiều cao ảnh cần tìm
Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{18}=\dfrac{1}{26}+\dfrac{1}{d'}\)
\(\Rightarrow d'=58,5cm\)
Độ cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{10}{h'}=\dfrac{26}{58,5}\Rightarrow h'=22,5cm\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{36}+\dfrac{1}{d'}\Rightarrow d'=18cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{1}{h'}=\dfrac{36}{18}\Rightarrow h'=0,5cm\)
\(b,\) - Ảnh ảo
- Cùng chiều
- Ảnh lớn hơn vật
\(b,\) Xét \(\Delta OAB\sim\Delta OA'B'\)
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}\left(1\right)\)
Xét \(\Delta FAB\sim\Delta FOI\)
\(\dfrac{AB}{A'B'}=\dfrac{A}{FO}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{FA}{FO}\) mà \(FA=OF-OA\)
\(\rightarrow\dfrac{OA}{OA'}=\dfrac{OF-OA}{OF}\)
\(\rightarrow\dfrac{7}{OA'}=\dfrac{21-7}{21}\)
\(\rightarrow OA'=10,5\left(cm\right)\)