K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

ờm, sách tui khác, v nen

16 tháng 12 2015

vậy nên tự túc chứ sao nữa -_-

30 tháng 12 2015

xin lỗi em mới học lớp 6 vô chtt tích nhé

chtt chưa học nâng cao hình7

16 tháng 12 2015

mk hok lớp 7 nhưng cô chưa dạy cái này

30 tháng 12 2015

tick rồi mk giải chi tiết cho

Câu 1:  Cho hàm số y = x3 – 2x2 + (1 – m)x + m  (1), m là số thực    1.     Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.    2.     Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x\frac{2}{1}+x\frac{2}{2}+x\frac{3}{2}<4\)thỏa mãn điều kiện Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung...
Đọc tiếp

Câu 1:  Cho hàm số y = x3 – 2x2 + (1 – m)x + m  (1), m là số thực

    1.     Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.

    2.     Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ 

\(x\frac{2}{1}+x\frac{2}{2}+x\frac{3}{2}<4\)thỏa mãn điều kiện 

Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH =\(a\sqrt{3}\). Tính thể tích khối chóp S.CDNM và khoảng cách giữa hai đường thẳng DM và SC theo a.

 

Câu 3:

1.  Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y - 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; -3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.

 

0
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
21 tháng 7 2019

Bài 1: 

O y x A C B 70o D z

*) Ta có: AC // Ox

Oy cắt AC tại C, cắt Ox tại O   

Từ hai điều trên suy ra: \(\widehat{xOy}\)và \(\widehat{ACy}\)là 2 góc đồng vị bằng nhau

Mà \(\widehat{xOy}\)\(70^o\)=> \(\widehat{ACy}\)\(70^o\)

*) Ta có: BA // Oy

AC cắt BA tại A, cắt Oy tại C

Từ 2 điều trên suy ra: \(\widehat{ACy}=\widehat{DAz}\)(2 góc đồng vị bằng nhau)

=> \(\widehat{DAz}\)\(70^o\)

Ta có: \(\widehat{DAz}\)và \(\widehat{BAC}\)là 2 góc đối đỉnh

=> \(\widehat{BAC}\)\(70^o\)

Ta có: \(\widehat{BAC}\)\(\widehat{CAz}=180^o\)(2 góc kề bù)

=> \(\widehat{CAz}=110^o\)

Mà \(\widehat{CAz}\)và \(\widehat{BAD}\)là 2 góc đối đỉnh => \(\widehat{BAD}\)\(110^o\)

Vậy...