Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{ab}\) (0 < a < 10; 0< b < 10) => a = 2b + 2 => a - 2b = 2 (1)
Do tổng 2 chữ số là số nguyên tố nhỏ nhất có 2 chữ số => a + b = 11 (2)
Từ (1), (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=2\\a+b=11\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}3b=9\\a+b=11\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=8\\b=3\end{matrix}\right.\)(tm)
Vậy số cần tìm là 83
Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại
+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn
+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)
=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3
Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.
Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3
Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại
Vậy n = 3
Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)
Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8
Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5
Gọi 2 số nguyên tố đó là p, q và giả sử \(p>q\). Khi đó ta có \(p+q,p-q\) đều là các số nguyên tố.
Nếu \(p-q=2\) \(\Rightarrow p+q=2\) (vì \(\left(p-q\right)+\left(p+q\right)=2p⋮2\)), vô lí
Tương tự với TH \(p+q=2\) cũng sẽ dẫn tới điều vô lí.
Do đó \(p+q,p-q\) lẻ, mà p và q đều các số nguyên tố \(\Rightarrow q=2\)
Vậy, ta cần tìm p để \(p\pm2\) là các số nguyên tố \(\Rightarrow p\ge5\)
Xét \(p=5\) thì \(p+2=7;p-2=3\) thỏa mãn.
Xét \(p>5\) thì p có dạng \(p=6k+1,p=6k+5\left(k\ge1\right)\), khi đó dễ thấy rằng \(p+2,p-2\) là hợp số, vô lí.
Vậy \(p=5,q=2\) là cặp số nguyên tố duy nhất thỏa mãn đề bài.
5 + 2 = 7
5 - 2 = 3
Hai số đó là 2 và 5
gọi cạnh huyền là a và 2 cạnh góc vuông là b,c (cạnh thứ 3 là c\(;\)\(b,c>0,a>50\)) \(\Rightarrow\) a,b có độ dài là 2 số nguyên tố
\(\Rightarrow\)\(a,b\ne2\) (do có hiệu là 50)
ta có : \(a=b+50\)
\(\Rightarrow\)\(c^2=a^2-b^2=100b+2500\)
để c nhỏ nhất thì c^2 nhỏ nhất \(\Rightarrow\) b là số nguyên tố nhỏ nhất khác 2 thoả mãn \(100b+2500\) là số chính phương nhỏ nhất
thử chút ta thấy \(b=11\) là giá trị b cần tìm \(\Rightarrow\)\(\hept{\begin{cases}a=11+50=61\\c=\sqrt{61^2-11^2}=60\end{cases}}\) (nhận)
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
1) Tổng của 3 số nguyên tố là số chẵn khi và chỉ khi 1 trong 3 số là 2 hoặc cả 3 số đó đều là 2. Như vậy số nguyên tố nhỏ nhất là 2.
2) Giả sử có 2 số nguyên tố p, q thỏa : p + q = 2013. Khi đó, 1 trong 2 số là 2 ( nếu ngược lại thì p + q chẵn, mâu thuẫn vì 2013 lẻ ). Giả sử p = 2, khi đó q = 2011 là số nguyên tố. Vậy tổng của 2 số nguyên tố có thể bằng 2013.