Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+..+\frac{5}{100.102}\)
\(\frac{2}{5}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{3}{6.8}+...+\frac{2}{100.102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{102}\)
\(A=\frac{25}{51}:\frac{2}{5}\)
\(A=\frac{125}{102}\)
Ủng hộ mk nha !!! *_*
\(\text{Đ}\text{ặt}:A=\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+..+\frac{5}{100.102}\)
\(\frac{2}{5}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{3}{6.8}+...+\frac{2}{100.102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\)
\(\frac{2}{5}A=\frac{1}{2}-\frac{1}{102}\)
\(A=\frac{25}{51}:\frac{2}{5}\)
\(A=\frac{125}{102}\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)
Ta có vế trái:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}=\)vế phải
Vậy\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\RightarrowĐpcm\)
\(\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{14}-7\cdot2^{29}\cdot27^6}\)
\(=\frac{5\cdot\left(2^2\right)^{15}\cdot\left(3^2\right)^9-2^2\cdot3^{20}\cdot\left(2^3\right)^9}{5\cdot2^9\cdot\left(2\cdot3\right)^{14}-7\cdot2^{29}\cdot\left(3^3\right)^6}\)
\(=\frac{5\cdot2^{30}\cdot3^{18}-2^2\cdot3^{20}\cdot2^{27}}{5\cdot2^9\cdot2^{14}\cdot3^{14}-7\cdot2^{29}\cdot3^{18}}\)
\(=\frac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{23}\cdot3^{14}-7\cdot2^{29}\cdot3^{18}}\)
\(=\frac{2^{29}\cdot3^{18}\cdot\left(5\cdot2\cdot1-1\cdot3^2\right)}{2^{23}\cdot3^{14}\cdot\left(5\cdot1\cdot1-7\cdot2^6\cdot3^4\right)}\)
\(=\frac{2^6\cdot3^4\cdot1}{5-36288}\)
\(=\frac{5184}{-36283}=-\frac{5184}{36283}\)
Đặt A
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)=\frac{5}{2}.\left(\frac{12}{25}\right)=\frac{6}{5}\)
Ai thấy đúng thì ủng hộ nha !!!
a, \(\frac{5}{2.4}+\frac{5}{4.6}+\frac{5}{6.8}+...+\frac{5}{48.50}\)
=\(\frac{5}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{50}\right)\)=\(\frac{5}{2}.\frac{12}{25}\)=\(\frac{6}{5}\)