Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{S}\)= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ .... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
\(S\)= ( 1 - \(\frac{1}{100}\)) : 2
\(S\)= \(\frac{99}{100}\): 2
\(S\)= \(\frac{99}{200}\)
tick nhé Lê Thiên Hương
1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100
=1/1-1/100
=100/100-1/100
=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}\)
= \(\frac{99}{100}\)
~~~
#Sunrise
S=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
S=1-\(\frac{1}{2010}\)
S=\(\frac{2009}{2010}\)
k nha bn
\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}+\frac{1}{2009\times2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
Vậy \(S=\frac{2009}{2010}\)
Học tốt #
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow M=1-\frac{1}{100}\)
\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)
\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)
\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)
\(a,M=1-\frac{1}{100}=\frac{99}{100}\)
\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)
\(=1-\frac{1}{99}=\frac{98}{99}\)
=>\(N=\frac{98}{99}:2=\frac{49}{99}\)
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(=1+\left(1-\frac{1}{2018}\right)\)
\(=1+\left(\frac{2018}{2018}-\frac{1}{2018}\right)\)
\(=1+\left(\frac{2017}{2018}\right)\)
\(=\frac{2018}{2018}+\frac{2017}{2018}=\frac{4035}{2018}\)
\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}...+\frac{1}{2017\cdot2018}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(=1+\left(1-\frac{1}{2018}\right)\)
\(=1+\frac{2017}{2018}\)
\(=1+\frac{2017}{2018}\)
\(=\frac{4035}{2018}\)
minh ko biet xin loi bn nha!
minh ko biet xin loi bn nha!
minh ko biet xin loi bn nha!
minh ko biet xin loi bn nha!
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(C=1-\frac{1}{2018}\)
\(C=\frac{2017}{2018}\)
\(C=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{2017x2018}\)
Ta thấy \(\frac{1}{1x2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2x3}=\frac{1}{2}-\frac{1}{3}\)
.............................................
\(\frac{1}{2017x2018}=\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow C=\frac{1}{1}-\frac{1}{2018}\)
\(\Rightarrow C=\frac{2017}{2018}\)
Chúc bạn học tốt nhớ k mình nhá
\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
Áp dụng công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
Dap an la 99/100.nho k cho minh.bai giai se gui sau