Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)5x+1 + 6.5x+1 = 875
5x+1 ( 1+6 ) = 875
5x+1 . 7 = 875
5x+1 = 875 : 7
5x+1 = 125
5x+1 = 53
x+1 = 3
x = 3 - 1
x = 2
2)3x+1 + 3x+3 = 810
3x . 3 + 32 . 3x+1 = 810
3x . 3 + 9 . 3x . 3 = 810
3x .3 ( 1 + 9 ) = 810
3x+1 . 10 = 810
3x+1 = 810 : 10
3x+1 = 81
3x+1 = 34
x+1 = 4
x = 4-1
x = 3
Bài 1:
a,x=11
b,không tồn tại giá trị của x
c,x=-3
Bài 2:
a,=300
b,=51
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
1:
Ta có: \(D=\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+\dfrac{3}{9\cdot11}+...+\dfrac{3}{53\cdot55}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{53\cdot55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{11}{55}-\dfrac{1}{55}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{2}{11}=\dfrac{3}{11}\)
2) Để A là số nguyên dương thì
\(\left\{{}\begin{matrix}x+2⋮x-5\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5+7⋮x-5\\x>5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7⋮x-5\\x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5\inƯ\left(7\right)\\x>5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5\in\left\{1;-1;7;-7\right\}\\x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;4;12;-2\right\}\\x>5\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{6;12\right\}\)
1.
a) \(2^x=128\)
\(2^x=2^7\)
\(=>x=7\)
b) \(8^{x-1}=64\)
\(8^{x-1}=8^2\)
\(=>x-1=2\)
\(x=2+1\)
\(=>x=3\)
c) \(3+3^x=30\)
\(3^x=30-3\)
\(3^x=27=3^3\)
\(=>x=3\)
d) \(\left(x+2\right)=64\) -> đề có thiếu không vậy?
e) \(3^2.x=3^5\)
\(x=3^5:3^2\)
\(=>x=3^3=27\)
f) \(\left(2x-1\right)^3=343\)
\(\left(2x-1\right)^3=7^3\)
\(=>2x-1=7\)
\(2x=7+1\)
\(2x=8\)
\(x=8:2\)
\(=>x=4\)
\(#Wendy.Dang\)
a,\(2^x\)=128 b,\(8^{x-1}\)=64 c,3+\(3^x\)=30 d,x+2=64
\(2^7\)=128 \(8^{x-1}\)=\(8^2\) \(3^x\)=30-3 x=64-2
=>x=7 =>x-1=2 \(3^x\)=27 x=62
x=2+1=3 \(3^x\)=\(3^3\)
=>x=3
e,\(3^2\).x=\(3^5\) f,(2x-\(1^3\))=343
x=\(3^5\):\(3^2\) 2x=1+343
x=27 2x=344
x=344:2
x=172
\(a,\Leftrightarrow x^3=\dfrac{20}{3}\Leftrightarrow x=\sqrt[3]{\dfrac{20}{3}}\\ b,\Leftrightarrow x-1=9\Leftrightarrow x=10\\ c,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow2x+1=5\Leftrightarrow x=2\\ e,\Leftrightarrow2x-4=4\Leftrightarrow x=4\)
Câu a) xem lại đề giùm nhé em
b) \(\left(x-1\right)^3=9^3\)
\(x-1=9\)
\(x=10\)
Vậy \(x=10\)
c) \(\left(x-1\right)^2=25\)
\(x-1=5\) hoặc \(x-1=-5\)
* \(x-1=5\)
\(x=6\)
* \(x-1=-5\)
\(x=-4\)
Vậy \(x=-4\); \(x=6\)
d) \(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
Vậy \(x=2\)
e) Sửa đề: \(\left(2x+4\right)^3=64\)
\(\left(2x+4\right)^3=4^3\)
\(2x+4=4\)
\(2x=0\)
\(x=0\)
Vậy \(x=0\)