Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/Tính
\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)
\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)
\(=\left(\frac{3}{7}\right)^{10}\)
2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)
Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)
hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)
=> \(A=24.\frac{2}{1}=48\)độ
\(B=24.\frac{3}{1}=72\)độ
\(C=24.\frac{5}{2}=60\)độ
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
Bài 1 :
a) \(\dfrac{14^{1005}.5^{1006}}{2^{1007}.35^{1004}}=\dfrac{7^{1005}.2^{1005}.5^{1006}}{2^{1007}.5^{1004}.7^{1004}}=\dfrac{7.5^2}{2^2}=\dfrac{7.25}{4}=\dfrac{175}{4}\)
Bài 2 :
Ta có : \(\dfrac{\widehat{A}}{4}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{9}\) ( \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{\widehat{A}}{4}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{9}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{4+5+9}=\dfrac{180^o}{18}=10^o\)
\(\dfrac{\widehat{A}}{4}=10^o\Rightarrow\widehat{A}=10^o.4=40^o\)
\(\dfrac{\widehat{B}}{5}=10^o\Rightarrow\widehat{B}=10^o.5=50^o\)
\(\dfrac{\widehat{C}}{9}=10^o\Rightarrow\widehat{C}=10^o.9=90^o\)
Vậy ...