Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2.(x – 5)+7 = 77
<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40
b, x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14
<=> x - 1 3 - 3 + 2 4 = 14
<=> x - 1 3 = 14 + 3 - 16 = 1
<=> x – 1 = 1 <=> x = 2
c, 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1
Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A = 2 + 2 2 + 2 3 + . . . + 2 2017
=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )
=> A = 2 2017 - 1
Ta có: 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 => 2 2017 - 1 = 2 x - 1 - 1 => x = 2018
d, 5 2 x - 3 - 2 . 5 2 = 5 2 . 3
<=> 5 2 x - 3 = 5 2 . 3 + 5 2 . 2
<=> 5 2 x - 3 = 5 2 . ( 3 + 2 )
<=> 5 2 x - 3 = 5 3
<=> 2x – 3 = 3 => x = 3
a) \(8x+56:14=60\)
\(\Rightarrow8x+4=60\)
\(\Rightarrow8x=56\)
\(\Rightarrow x=\dfrac{56}{8}\)
\(\Rightarrow x=7\)
b) Mình làm rồi nhé !
c) \(41-2^{x+1}=9\)
\(\Rightarrow2^{x+1}=41-9\)
\(\Rightarrow2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
d) \(3^{2x-4}-x^0=8\)
\(\Rightarrow3^{2x-4}-1=8\)
\(\Rightarrow3^{2x-4}=9\)
\(\Rightarrow3^{2x-4}=3^2\)
\(\Rightarrow2x-4=2\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
g) \(65-4^{x+2}=2014^0\)
\(\Rightarrow65-4^{x+2}=1\)
\(\Rightarrow4^{x+2}=64\)
\(\Rightarrow4^{x+2}=4^3\)
\(\Rightarrow x+2=3\)
\(\Rightarrow x=1\)
i) \(120+2\left(4x-17\right)=214\)
\(\Rightarrow2\left(4x-17\right)=214-120\)
\(\Rightarrow2\left(4x-17\right)=94\)
\(\Rightarrow4x-17=47\)
\(\Rightarrow4x=47+17\)
\(\Rightarrow4x=64\)
\(\Rightarrow x=16\)
a: \(8x+56:14=60\)
=>8x+4=60
=>8x=60-4=56
=>x=56/8=7
b: \(5^{2x-3}-2\cdot5^2=5^2\cdot3\)
=>\(5^{2x-3}=5^2\cdot3+2\cdot5^2=5^3\)
=>2x-3=3
=>2x=6
=>x=3
c: \(41-2^{x+1}=9\)
=>\(2^{x+1}=41-9=32\)
=>x+1=5
=>x=4
d: \(3^{2x-4}-x^0=8\)
=>\(3^{2x-4}-1=8\)
=>\(3^{2x-4}=8+1=9\)
=>2x-4=2
=>2x=6
=>x=3
g: \(65-4^{x+2}=2014^0\)
=>\(65-4^{x+2}=1\)
=>\(4^{x+2}=65-1=64\)
=>x+2=3
=>x=1
i: 120+2(4x-17)=214
=>2(4x-17)=214-120=94
=>4x-17=94/2=47
=>4x=64
=>\(x=\dfrac{64}{4}=16\)
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
a) 52x - 3 - 2 . 52 = 52 . 3
x - 3/52 - 2 = 3
x = 3 + 2 + 3/52
x = 263/52
b) 740 / (x + 10) = 102 - 2 . 13
740 / (x + 10) = 76
x + 10 = 740 / 76
x + 10 = 185/19
x = 185/19 - 10
x = -5/19
c) 65 - 4x + 2 = 20140
65 - 4x = 20140 - 2
65 - 4x = 20138
4x = 65 - 20138
4x = -20073
x = -20073/4
d) 120 + 2 . (3x - 17) = 214
60 + 3 . x - 17 = 107
20 + x - 17/3 = 107/3
20 + x = 107/3 + 17/3
20 + x = 124/3
x = 124/3 - 20
x = 64/3
e) 41 - 2x + 1 = 9
42 - 2x = 9
21 - x = 9/2
x = 21 - 9/2
x = 33/2
a: \(4x^3+12=120\)
=>\(4x^3=108\)
=>\(x^3=27=3^3\)
=>x=3
b: \(\left(x-4\right)^2=64\)
=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)
c: (x+1)^3-2=5^2
=>\(\left(x+1\right)^3=25+2=27\)
=>x+1=3
=>x=2
d: 136-(x+5)^2=100
=>(x+5)^2=36
=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)
e: \(4^x=16\)
=>\(4^x=4^2\)
=>x=2
f: \(7^x\cdot3-147=0\)
=>\(3\cdot7^x=147\)
=>\(7^x=49\)
=>x=2
g: \(2^{x+3}-15=17\)
=>\(2^{x+3}=32\)
=>x+3=5
=>x=2
h: \(5^{2x-4}\cdot4=10^2\)
=>\(5^{2x-4}=\dfrac{100}{4}=25\)
=>2x-4=2
=>2x=6
=>x=3
i: (32-4x)(7-x)=0
=>(4x-32)(x-7)=0
=>4(x-8)*(x-7)=0
=>(x-8)(x-7)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
k: (8-x)(10-2x)=0
=>(x-8)(x-5)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)
m: \(3^x+3^{x+1}=108\)
=>\(3^x+3^x\cdot3=108\)
=>\(4\cdot3^x=108\)
=>\(3^x=27\)
=>x=3
n: \(5^{x+2}+5^{x+1}=750\)
=>\(5^x\cdot25+5^x\cdot5=750\)
=>\(5^x\cdot30=750\)
=>\(5^x=25\)
=>x=2
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a,-4/7=x/21
-12/21 = x/21
x= -12
b,(x-3)/15=1/-5
x - 3 = -1/5 * 15
x - 3 = -3
x = 0
c,.(3x+8)/-12=-5/30
=> 3x + 8 = 2
=> 3x=-6
=>x=-2