Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
c) \(\frac{\left(3\cdot4\cdot2^{16}\right)}{11\cdot2^{13}\cdot4^{11}-16^9}=\frac{\left(3\cdot2^2\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot2^{22}-2^{36}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{11\cdot2^{35}-2^{26}}\)
\(=\frac{9\cdot2^4\cdot2^{32}2^{ }}{\left(11-2\right)\cdot2^{35}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{9\cdot2^{35}}\)
\(=\frac{9\cdot1\cdot2^{32}}{9\cdot2^{31}}=\frac{2^{32}}{2^{31}}=2\)
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)\)
A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
A = \(\frac{1}{2}\)x\(\frac{2}{3}.\)\(\frac{3}{4}....\)\(\frac{2003}{2004}\)
A = \(\frac{1}{2004}\)
\(3^2\times\frac{1}{243}\times81^2\times\frac{1}{3^3}\)
\(=3^2\times\frac{1}{3^5}\times\left(3^4\right)^2\times\frac{1}{3^3}\)
\(=\left(3^2\times3^8\right)\times\left(\frac{1}{3^5}\times\frac{1}{3^3}\right)\)
\(=3^{10}\times\frac{1}{3^8}\)
\(=3^2\)
\(=9\)
\(\left(4\times2^5\right)\div\left(2^3\times\frac{1}{6}\right)\)
\(=\left(2^2\times2^5\right)\div\left(2^3\times\frac{1}{2\times3}\right)\)
\(=2^7\div2^2\times3\)
\(=2^5\times3\)
\(=96\)
\(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)
\(=3^2.\frac{1}{3^5}.\left(3^4\right)^2.\frac{1}{3^3}\)
\(=\left(3^2.3^8\right).\left(\frac{1}{3^5}.\frac{1}{3^3}\right)\)
\(=3^{10}.3^{-8}\)
\(=3^2=9\)
\(\left(4.2^5\right):\left(2^3.\frac{1}{6}\right)\)
\(=2^7:2^2.3\)
\(=2^5.3\)
\(=96\)
a/(x+1)+(x+2)+...+(x+100)=5750
x+1+x+2+...+x+100=5750
100x+(1+2+...+100)=5750
100x+50.(100+1)=5750
100x+5050=5750
100x=700
x=7.
b/ 1/1.2+1/2.3+...+1/x(x+1)=2015/2016
1/1-1/2+1/3-1/4+...+1/x-1/x+1=2015/2016
1-1/x+1=2015/2016
1/x+1=1/2016
x+1=2016
x=2015