Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(9^{x-1}=\frac{1}{9}\)
=> \(9^{x-1}=9^{-1}\)
=> x - 1 = -1
=> x = 0
ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi
=>
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
1) \(9^{x-1}=\dfrac{1}{9}\) (1)
\(\Leftrightarrow3^{2x-2}=3^{-2}\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)
2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow15=6\sqrt{7-3x^2}\)
\(\Leftrightarrow6\sqrt{7-3x^2}=15\)
\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)
\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)
\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
\(\Leftrightarrow x=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
Bài 1:
a, \(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
Vì \(9\ne-1;9\ne0;9\ne1\) nên
\(x-1=-1\Rightarrow x=0\)
Vậy \(x=0\)
b, \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{1}{3}:\dfrac{2}{15}\)
\(\Rightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Rightarrow\left(\sqrt{7-3x^2}\right)^2=\left(\dfrac{5}{2}\right)^2\)
\(\Rightarrow7-3x^2=\dfrac{25}{4}\)
\(\Rightarrow3x^2=\dfrac{3}{4}\Rightarrow x^2=\dfrac{1}{4}\)
\(\Rightarrow x=\pm\dfrac{1}{2}\)
Vậy \(x=\pm\dfrac{1}{2}\)
Chúc bạn học tốt!!!
Bài 2:
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2\ge}0;\left|x+y+z\right|\ge0\)
\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\) với mọi giá trị của \(x;y;z\in R\).
Để \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\) thì
\(\left\{{}\begin{matrix}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}-\sqrt{2}+z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{matrix}\right.\)
Vậy \(x=\sqrt{2};y=-\sqrt{2};z=0\)
Chúc bạn học tốt!!!