K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\cdot\dfrac{84}{85}=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)

hay \(x=\dfrac{68}{189}\)

Vậy: \(x=\dfrac{68}{189}\)

5 tháng 5 2021

Sửa đề: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415

a) Ta có: 3x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=4153x1⋅5+3x5⋅9+3x9⋅13+...+3x81⋅85=415

⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415⇔3x4(41⋅5+45⋅9+49⋅13+...+481⋅85)=415

⇔x⋅34(1−15+15−19+19−113+...+181−185)=415⇔x⋅34(1−15+15−19+19−113+...+181−185)=415

⇔x⋅34(1−185)=415⇔x⋅34(1−185)=415

⇔x⋅6385=415⇔x⋅6385=415

hay x=68189x=68189

Vậy: x=68189

 

Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)

hay \(x=\dfrac{68}{189}\)

Vậy: \(x=\dfrac{68}{189}\)

Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)

hay \(x=\dfrac{68}{189}\)

Vậy: \(x=\dfrac{68}{189}\)

Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\cdot\dfrac{84}{85}=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)

hay \(x=\dfrac{68}{189}\)

Vậy: \(x=\dfrac{68}{189}\)

Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)

hay \(x=\dfrac{68}{189}\)

Vậy: \(x=\dfrac{68}{189}\)

Sửa đề: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

a) Ta có: \(\dfrac{3x}{1\cdot5}+\dfrac{3x}{5\cdot9}+\dfrac{3x}{9\cdot13}+...+\dfrac{3x}{81\cdot85}=\dfrac{4}{15}\)

\(\Leftrightarrow\dfrac{3x}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{81\cdot85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{81}-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{3}{4}\left(1-\dfrac{1}{85}\right)=\dfrac{4}{15}\)

\(\Leftrightarrow x\cdot\dfrac{63}{85}=\dfrac{4}{15}\)

hay \(x=\dfrac{68}{189}\)

Vậy: \(x=\dfrac{68}{189}\)

9 tháng 2 2021

a)  3x – 15 = 25 – 5x 

=> 3x + 5x = 25 + 15

=> 8x = 40

=> x = 5

 b) 3x - 17 = 2x – 7     

=> 3x - 2x = -7 + 17

=> x = 10

 c) 2x – 17 =  – (3x – 18)

=> 2x - 17 = -3x + 18

=> 2x + 3x = 18 + 17

=> 5x = 35

=> x = 7

d) 3x – 14 = 2(x – 9) + 1

=> 3x - 14 = 2x - 18 + 1

=> 3x - 2x = -18 + 1 + 14

=> x = -3

f) (x – 5)2 = 9          

\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

 

 

a) Ta có: \(3x-15=25-5x\)

\(\Leftrightarrow3x-15-25+5x=0\)

\(\Leftrightarrow8x-40=0\)

\(\Leftrightarrow8x=40\)

hay x=5

Vậy: x=5

b) Ta có: \(3x-17=2x-7\)

\(\Leftrightarrow3x-17-2x+7=0\)

\(\Leftrightarrow x-10=0\)

hay x=10

Vậy: x=10

c) Ta có: \(2x-17=-\left(3x-18\right)\)

\(\Leftrightarrow2x-17=-3x+18\)

\(\Leftrightarrow2x-17+3x-18=0\)

\(\Leftrightarrow5x-35=0\)

\(\Leftrightarrow5x=35\)

hay x=7

Vậy: x=7

d) Ta có: \(3x-14=2\left(x-9\right)+1\)

\(\Leftrightarrow3x-14=2x-18+1\)

\(\Leftrightarrow3x-14-2x+18-1=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy: x=-3

f) Ta có: \(\left(x-5\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;8\right\}\)