K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

a)\(\left(x^2-x+1\right).\left(x+1\right)-x^3+3x=15\)

\(x^3+x^2-x^2-x+x+1-x^3+3x=15\)

\(1+3x=15\)

\(3x=15-1\)

\(3x=14\)

\(x=\frac{14}{3}\)
 

 

14 tháng 6 2016

b) \(\left(x+3\right).\left(x-2\right)+3x=4\left(x+\frac{3}{4}\right)\)

\(x^2-2x+3x-6+3x=4x+3\)

\(x^2-2x+3x+3x-4x=6+3\)

\(x^2=9\)

\(x^2=3^2\) hoặc \(x^2=\left(-3\right)^2\)

 vậy x=3 hoặc x=-3

 

14 tháng 6 2016

Chúng ta sẽ sử dụng hằng đẳng thức em nhé :)

a. \(x^3+1-x^3+3x=15\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)

b. \(x^2+x-6+3x=4x+3\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

c. \(x^3+2x^2-5x-10+5x=2x^2+17\Leftrightarrow x^3=27\Leftrightarrow x=3\)

14 tháng 6 2016

a,

(x2-x+1)(x+1)-x3+3x=15

x3-x2+x+x2-x+1-x3+3x=15

x3-x3-x2+x2+x-x+3x+1=15

3x+1=15

3x=15-1

3x=14

x=14/3

b,

(x+3)(x-2)+3x=\(\frac{4}{x+\frac{3}{4}}\)

x2-2x+3x-6+3x=\(\frac{4}{x+\frac{3}{4}}\)

x2-2x+3x+3x-6=\(\frac{4}{x+\frac{3}{4}}\)

Tới đây hết biết , đề có gì sai sai sao ý !

c,

(x2-5)(x+2)+5x=2x2+17

x3+2x2-5x-10+5x=2x2+17

x3+2x2-5x+5x-10=2x2+17

x3+2x2-10=2x2+17

x3-10=17

x3=17+10

x3=27

\(\Rightarrow x=3\)(Vì : 33=27)

_k_ nhé bn

14 tháng 6 2016

Nhân ra thôi bạn, có hằng đẳng thức gì đâu !

a) \(\left(x^2-x+1\right)\left(x+1\right)-x^3+3x=15\)

\(\Leftrightarrow\left(x^2-x+1\right)\cdot x+x^2-x+1-x^3+3x=15\)

\(\Leftrightarrow x^3-x^2+x+x^2-x+1-x^3+3x=15\)

\(\Leftrightarrow1+3x=15\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)

b) \(\left(x+3\right)\left(x-2\right)+3x=4\cdot\left(x+\frac{3}{4}\right)\)

\(\Leftrightarrow x^2+3x-2x-6+3x=4x+3\)

\(\Leftrightarrow x^2+4x-6=4x+3\)

\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)

c) \(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)

\(\Leftrightarrow x^3-5x+2x^2-10+5x=2x^2+17\)

\(\Leftrightarrow x^3=27\Leftrightarrow x=3\)

a) Ta có: \(8x\left(2x-3\right)-4x\left(4x+3\right)=72\)

\(\Leftrightarrow16x^2-24x-16x^2-12x=72\)

\(\Leftrightarrow-36x=72\)

hay x=-2

b) Ta có: \(\left(x+2\right)\left(x+4\right)-x\left(x+2\right)=104\)

\(\Leftrightarrow x^2+6x+8-x^2-2x=104\)

\(\Leftrightarrow4x=96\)

hay x=24

c) Ta có: \(\left(x-1\right)\left(x+4\right)-x\left(x-1\right)=308\)

\(\Leftrightarrow x^2+3x-4-x^2+x=308\)

\(\Leftrightarrow4x=312\)

hay x=78

d) Ta có: \(15x\left(2x-3\right)-\left(5x+2\right)\left(6x-5\right)=-22\)

\(\Leftrightarrow30x^2-45x-30x^2+25x-12x+10=-22\)

\(\Leftrightarrow-32x=-32\)

hay x=1

a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)

=>3(3x+2)-4(3x+1)=10

=>9x+6-12x-4=10

=>-3x+2=10

=>-3x=8

=>x=-8/3

b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)

=>(x-1)(x-2)-x(x+2)=-9x+10

=>x^2-3x+2-x^2-2x=-9x+10

=>-5x+2=-9x+10

=>x=2(loại)

a: =>6x-3x^2-5=4-3x^2-2

=>6x-5=2

=>6x=7

=>x=7/6

b: =>20x+5-12x^2-3x=6x^2-10x+3x-5

=>-12x^2+17x+5-6x^2+7x+5=0

=>-18x^2+24x+10=0

=>x=5/3 hoặc x=-1/3

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

23 tháng 12 2019

a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)

\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)

\(A=9x\)

Thay x = 15 vào, ta có: 

\(A=9.15=135\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(B=5x^2-20xy-4y^2+20xy\)

\(B=5x^2-4y\)

Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có: 

\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)

c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)

\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)

\(C=9x^2y^2-xy^3-8x^3\)

Thay \(x=\frac{1}{2};y=2\) vào, ta có:

\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)

d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(D=18x^2+12x-7\)

Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

+) Với x = -2

\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)

+) Với x = 2

\(D=18.2^2+12.2-7=89\)