Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tìm x.
a. 7x - 5 = 16
⇒ 7x = 16 + 5
⇒ 7x = 21
=> x = 21 : 7
=> x = 3
Vậy : x = 3
b. 156 - 2 = 82
c. 10x + 65 = 125
=> 10x = 125 - 65
=> 10x = 60
=> x = 60 : 10
=> x = 6
Vậy : x = 6
e. 15 + 5x = 40
=> 5x = 40 -15
=> 5x = 25
=> x = 25 : 5
=> x = 5
Vậy : x = 5
Do A = x183y chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = x183y
Vì A = x183y chia cho 9 dư 1
→ x183y - 1 chia hết cho 9
→ x183y chia hết cho 9
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
a)
= 48 + 288 : ( x - 3 )2 = 50
288 : ( x - 3 )2 = 50 - 48
288: ( x - 3 )2= 2
(x - 3 )2= 288 : 2
(x - 3)2= 144
(x - 3)2 = 122
x - 3 = 12
x = 12 + 3 = 15
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
a) Ta có:
\(\overline{abcdeg}=10000.\overline{ab}+100.\overline{cd}+eg=9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)\(9999.\overline{ab}⋮11\)
\(99.\overline{cd}⋮11\)
\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow9999.\overline{ab}+99.\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)hay \(\overline{abcdeg}⋮11\)(đpcm)
b) Ta có:
\(E=92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...\left(1-\dfrac{92}{100}\right)=\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{100}=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)\(F=\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)\)
\(\dfrac{E}{F}=\dfrac{8\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{100}\right)}=\dfrac{8}{\dfrac{1}{5}}=40\)
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)