Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(n+9,n-6)=d
Ta có:\(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\)\(\Rightarrow n+9-\left(n-6\right)⋮d\Rightarrow15⋮d\)
\(\Rightarrow d\inƯ\left(15\right)=\left\{1,15,3,5\right\}\)
Với d=3 thì \(\hept{\begin{cases}n+9=3m\\n-6=3n\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=3m-9\\n=3n+6\end{cases}}\)
Với d=5 thì \(\hept{\begin{cases}n+9=5k\\n-6=5l\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=5k-9\\n=5l+6\end{cases}}\)
Với d=15 thì \(\hept{\begin{cases}n+9=15x\\n-6=15y\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=15x-9\\n=15y+6\end{cases}}\)
Để \(\frac{n+9}{n-6}\) tối giản thì d=1 nên \(d\ne3,d\ne5,d\ne15\) nên \(n\ne3m-9;n\ne3n+6;n\ne5k-9;n\ne5l+6;n\ne15x-9;n\ne15y+6\)
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
a, A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi UCLN(a2 + a - 1,a2 + a + 1) là d
Ta có: a2 + a - 1 \(⋮\)d
a2 + a + 1 \(⋮\)d
=> (a2 + a - 1) - (a2 + a + 1) \(⋮\)d
=> 2 \(⋮\)d => d = {1;-1;2;-2}
Mà a2 + a - 1 = a(a + 1) - 1 lẻ => d lẻ => d không thể bằng 2;-2 => d = {1;-1}
Vậy A tối giản
b1:<=>(x2-4x+4)y-3x2+12x-12=-4
=>(x2-4x+4)y-3x2+12x-(-4)-12=0
=>(x2-4x+4)y-3x2+12x-8=0
=>x2-4x+4=0
ta có (-4)2-4(1.4)=0
\(\Rightarrow x_{1,2}=\frac{b\pm\sqrt{\Delta}}{2a}=\frac{4\pm\sqrt{0}}{2}\)
=>x=2
thay x=2 vào rồi tìm y
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
mk xin lỗi các bạn nhé
1/tìm p/s ... 8 lần p/số a/b
nhé hihi
I'm sorry
như thế nào noi sem