Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Giải phương trình nghiệm nguyên dương
Do nên ta có
Mặt khác ta có
Vậy PT đã cho có nghiệm duy nhất
\(x^2=y^2+2y+13\)
\(\Leftrightarrow x^2=\left(y^2+2y+1\right)+12\)
\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)
\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)
\(\Leftrightarrow\left(x-y-1\right).\left(x+y+1\right)=12\)
do x,y nguyên dương nên \(x-y-1;x+y+1\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
xy nguyên dương \(\Rightarrow x+y+1>x-y-1\)
từ đó ta có bẳng sau
x+y+1 | 12 | 6 | 4 |
x-y-1 | 1 | 2 | 3 |
x | 13/2(loại) | 4(TM) | 7/2(loại) |
y | 9/2(loại) | 1(TM) | -1/2(loại) |
vậy cặp giá trị (x;y) thỏa mãn là:x=4;y=1
Có:x^2=y^2+2y+13
=>x^2=(y^2+2y+1)+12
=>x^2=(y+1)^2+12
=>x^2-(y+1)^2=12
=>(x-y-1)(x+y+1)=12
vì x, y là các số nguyên dương
=>x-y-1<x+y+1
Xét các trường hợp
TH1:x-y-1=1 và x+y+1=12
=> x-y=2 và x+y=11
=>x=6.5 và y=4.5 (Loại vì x,y là các số nguyên dương)
TH2: x-y-1=2 và x+y+1=6
=>x-y=3 và x+y=5
=>x=4 và y=3 (Thỏa mãn)
TH3:x-y-1=3 và x+y+1=4
=>x-y=4 và x+y=3(Loại vì x-y<x+y)
Vậy x=4, y=3
\(x;y\in N^{\cdot}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}\le1\\\frac{1}{y}\le1\end{cases}}\)
\(\Leftrightarrow z=\frac{1}{x}+\frac{1}{y}\le2\)
+ \(z=2\Leftrightarrow x=y=1\)( dấu = xảy ra)
\(+z=1\Leftrightarrow1=\frac{1}{x}+\frac{1}{y}.\)
Nếu x = y => 2/x =1 => x =y =2
Nếu g/s x > y => 1 = 1/x +1/y < 2/y =>y < 2
=> y =1 => 1/x =0 ( vô lí )
Vậy x =y =2; z =1 hoặc x = y =1 ; z =2
\(x^2-y^2=105\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=105=3.5.7\)
Có \(x,y\)nguyên dương nên \(x-y,x+y\)là các ước dương của \(105\), \(x-y< x+y\).
Ta có bảng giá trị:
x-y | 1 | 3 | 5 | 7 |
x+y | 105 | 35 | 21 | 15 |
x | 53 | 19 | 13 | 11 |
y | 52 | 16 | 8 | 4 |
\(VD1\)
Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)
\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\)
\(\Rightarrow x\le4,5^2\)
\(\Rightarrow x\le20,25\)
\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)
TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)
TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)
Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)
Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)
Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)
Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )
KL....
VD2: Ta có:
x+y+z=xyz ( 1 )
Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:
\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Giả sử \(x\ge y\ge z\ge1\)thì ta có:
\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)
Thay z=1 vào ( 1 ) ta đc:
x+y+1=xy
\(\Leftrightarrow\)xy -x - y = 1
\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2
\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2
Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3