K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

1/\(\dfrac{1}{5}x-5x^2=0\Leftrightarrow5x\left(\dfrac{1}{25}-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{25}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)2/ a/

m + 7n = 0 <=> m = -7n/4 (1)

thay (1) vào f(x) = \(\dfrac{-7n}{4}\cdot x^2+7n=0\Leftrightarrow-7n\left(\dfrac{1}{4}x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}n=0\\n=\pm2\end{matrix}\right.\)

b/ g(x) = \(m^2\cdot x^2-2m\cdot x^2+4mx-8m^2=\left(m^2-2m\right)x^2+4mx-8m^2=0\)

Δ' = (2m)^2-(m^2 - 2m)* (-8m^2) = \(8m^4-16m^3+4m^2=4m^2\left(2m^2-4m+1\right)=4m^2\left(\left(m^2-2m+1\right)+\left(m^2-2m+1\right)-1\right)=4m^2\left(\left(m-1\right)^2+\left(m-1\right)^2-1\right)\)?

29 tháng 4 2018

câu b sai đề chăng?

5 tháng 4 2016

a)  4-2m +2 = 0 

m = 3

b) thay m =2 vao ta co; 

x2 + 2x +2 = 0 ta tim dc tap nghiem tu giai nhe ng dep

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

11 tháng 7 2015

a) Thay đa thức này bằng 0, ta được: 

f(x) = x^3 - x^2 + x - 1 = 0

=> f(x) = x . x2 - x . x + x - 1 = 0

=> f(x) = x. (x2 - x + x) = 0 + 1 = 1

=> f(x) = x . x2 = 1

=> x = 1   và    x2 = 1

=> x = 1

Vậy nghiệm của đa thức là x = 1

13 tháng 4 2022

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2022

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

29 tháng 4 2019

xét f(2) = a2^2 - 2a + 2 = 0

=> 4a - 2a + 2 = 0

=> 2(2a - 1 + 1) = 0

=> 2a = 0

=> a = 0

18 tháng 7 2021

\(P\left(x\right)=7x^2-5x-2\) có \(\left(7\right)+\left(-5\right)+\left(-2\right)=0\)nên có 1 nghiệm \(x=1\)

(nghiệm còn lại là \(x=-\frac{2}{7}\))

 \(Q\left(x\right)=\frac{1}{3}x^2+\frac{2}{5}x-\frac{11}{15}\) có \(\left(\frac{1}{3}\right)+\left(\frac{2}{5}\right)+\left(-\frac{11}{15}\right)=0\)nên có 1 nghiệm \(x=1\)

(nghiệm còn lại là \(x=-\frac{11}{5}\))

 \(M\left(x\right)=2,5x^2+3,7x+1,2\) có \(\left(2,5\right)-\left(3,7\right)+\left(1,2\right)=0\)nên có 1 nghiệm \(x=-1\)

(nghiệm còn lại là \(x=-0,48\))

9 tháng 5 2019

Đầu tiên ta c/m đẳng thức phụ (nếu lớp 8 sẽ gọi là hằng đẳng thức và được áp dụng vào luôn còn lớp 7 phải c/m):\(a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1). Thật vậy,ta có: \(a^2-b^2=a^2+ab-ab-b^2\)

\(=\left(a^2+ab\right)-\left(ab+b^2\right)=a\left(a+b\right)-b\left(a+b\right)=\left(a-b\right)\left(a+b\right)\).

Và đẳng thức: \(\left(a-b\right)^2=a^2-2ab+b^2\) (2) cái này thì đơn giản,chuyển \(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\) rồi nhân phá tung cái ngoặc đó ra là xong.

Do đó 2 đẳng thức trên đúng.Trở lại bài toán,ta có:

\(-x^2+8x-8=0\Leftrightarrow x^2-8x+8=0\) (Chia hai vế của đẳng thức cho -1)

\(\Leftrightarrow\left(x^2-2.x.4+4^2\right)-4^2+8=0\)

Áp dụng đẳng thức số 2 suy ra:

\(\left(x-4\right)^2-8=0\Leftrightarrow\left(x-4\right)^2-\left(\sqrt{8}\right)^2=0\) (do \(\left(\sqrt{8}\right)^2=8\))

Áp dụng đẳng thức số 1 suy ra:

\(\left(x-4-\sqrt{8}\right)\left(x-4+\sqrt{8}\right)=0\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{8}\\x=4-\sqrt{8}\end{cases}}\)

Vậy ...

Đúng không ta?