Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi H là trọng tâm của tam giác ABC. Khi đó chiều cao của lăng trụ bằng A'H = AH.tan60 °
TK :
Gọi M là trung điểm của BC
=> AM ⊥⊥ BC (1)
Ta có {BC ⊥AMBC⊥AA'⇒ BC ⊥ A'M (2)
Mặt khác (ABC) ∩(A'BC) = BC (3)
Gọi H, M, I lần lượt là trung điểm của các đoạn thẳng AB, AC, AM.
Ta có IH là đường trung bình của tam giác AMB, MB là trung tuyến của tam giác đều ABC.
Do đó:
⇒ A ' I H ^ là góc gữa hai mặt phẳng (AA'C'C) và (ABCD)
⇒ A ' I H ^ = 45 °
Trong tam giác A'HI vuông tại H, ta có:
Đáp án D
Ta có góc giữa cạnh bên AA' với mặt đáy (ABC) là:
góc A ' A H ^ và tan A ' A H = A ' H A H
Suy ra A ' H = a 2 . tan 30 ° = a 3 6
Do đó V = A ' H . S A B C = a 3 6 . a 2 3 4 = a 3 8
cảm ơn ông vì thời gian qua đã giúp tui nhiều bài tập :33
7.
Hình vuông có diện tích bằng 4 nên độ dài cạnh bằng \(\sqrt{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}R=\frac{2}{2}=1\\h=2\end{matrix}\right.\)
Thể tích trụ: \(V=\pi R^2h=2\pi\)
8.
Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\)
Mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)
\(AM=\frac{a\sqrt{3}}{2}\) (độ dài trung tuyến tam giác đều)
\(\Rightarrow tan\widehat{SMA}=\frac{SA}{AM}=\frac{2\sqrt{3}}{3}\)