K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

13 tháng 7 2018

bạn trả lời đúng rùi

Ta có \(\left|7x-5y\right|\ge0\) với \(\forall x;y\)

\(\left|2z-3x\right|\ge0\)với \(\forall x;z\)

\(\left|xy+yz+zx-2000\right|\ge0\)với \(\forall x;y;z\)

=>\(\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\) với \(\forall x;y;z\)

Mà A=0 \(\Leftrightarrow\left|7x-5y\right|=\left|2z-3x\right|=\left|xy+yz+zx-2000\right|=0\)

Lại có: \(\left|7x-5y\right|=0\Rightarrow7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Tương tự, ta cx có: \(\left|2z-3x\right|=\frac{x}{2}=\frac{z}{3}\)

Và \(\left|xy+yz+zx-2000\right|=0\Rightarrow xy+yz+zx-2000=0\Rightarrow xy+yz+zx=2000\)

Từ đó ta tìm đc: \(\orbr{\begin{cases}x=20;y=28;z=30\\x=-20;y=-28;z=-30\end{cases}}\)

\(A\ge0\)mà A=0 <=>(x;y;z)\(\in\left\{\left(20;28;30\right),\left(-20;-28;-30\right)\right\}\)

Vậy GTNN của A=0 <=> (x;y;z)\(\in\left\{\left(20;28;30\right)\left(-20;-28;-30\right)\right\}\)

Hôm thứ 6 tuần trc cô giáo t vừa cho cái đề này để ôn thi, hình như cô in trên mạng hay sao ý ạ, cô giảng cho mình như nà, mik làm tắt( có gì ko hiểu ib nha), cồn nếu ko thì lên mạng tìm nha~

23 tháng 3 2020

cho mk hỏi xíu

vì sao A lại bằng 0 vậy ??

8 tháng 9 2017

1)

a)  \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)

\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)

\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)

Dấu bằng xảy ra khi x + 2 = 0

                               x      = -2

Vậy GTNN của M bằng 5 khi x = -2

b)  \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)

\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)

\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)

Dấu bằng xảy ra khi x - 10 = 0

                              x        =   10

Vậy GTNN của N bằng 1 khi x = 10

2)

a)  \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)

\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)

\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)

Dấu bằng xảy ra khi y - 3 = 0

                               y      = 3

Vậy GTLN của C bằng -6 khi y = 3

b)  \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)

\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)

\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)

Dấu bằng xảy ra khi  \(x-\frac{9}{2}=0\)

                                \(x=\frac{9}{2}\)

Vậy GTLN của B bằng  \(\frac{33}{4}\)khi x =  \(\frac{9}{2}\)

8 tháng 9 2017

a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5 

Vì : \(\left(x+2\right)^2\ge0\forall x\in R\) 

Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)

Vậy Mmin = 5 khi x = -2

b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1 

Vì \(\left(x-10\right)^2\ge0\forall x\in R\)

Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)

Vậy Nmin = 1 khi x = 10

Bài 2 : 

a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6

Vì \(-\left(y-3\right)^2\le0\forall x\in R\)

 Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)

Vậy Cmin = -6 khi y = 3 

b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x +  \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)

Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)

Nên :  B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)

Vậy Bmin \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)

11 tháng 10 2021

\(A=\left|2x+1\right|+13\ge13\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

\(B=-\left(3x+5\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{3}\)

11 tháng 10 2021

a, Vì |2x+1|≥0 với mọi 

⇒A≥13

Dấu = xảy ra ⇔2x+1=0⇔x=\(\dfrac{-1}{2}\)

b, Vì (3x+5)2≥0 với mọi x

⇒B≤9

Dấu = xảy ra ⇔3x+5=1⇔x=\(\dfrac{-5}{3}\)