Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)
Dấu " = " xảy ra <=> a=b=c=1/4 ( cái này bạn tự giải rõ nhé)
\(a,\frac{x}{2}=\frac{y}{7}\)và \(x-2y=\left(-24\right)\)
\(\Rightarrow\frac{x}{2}-\frac{2y}{7\cdot2}=\frac{x-2y}{2-14}=\frac{-24}{-12}=2\)
\(\Rightarrow\)\(\frac{x}{2}=2\Rightarrow x=4\)
\(\Rightarrow\frac{y}{7}=2\Rightarrow y=14\)
mấy câu còn lại tương tự
mik giải câu c) thôi nha
c) Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{-1}{-1}=1\)
Do đó :
\(\frac{x}{2}=1=>x=1.2=2\)
\(\frac{y}{5}=1=>x=1.5=5\)
Vậy x = 2, y = 5
x2 - 2x+ 1 =6y2- 2x+ 2
=> x2- 2x+ 1- 2x -2 = 6y2
=> x2 - 1 = 6y2
=> xx + x - x -1 = 6y2
=> x( x+1) - (x +1) = 6y2
=> (x+1)(x-1)= 6y2 (1)
Nếu x lẻ => x+ 1 và x-1 chẵn (m)
nếu x chắn => x+ 1 và x-1 lẻ (n)
từ (m) và (n) => x+ 1 và x-1 cùng tính chẵn lẻ
+) x+ 1 và x-1 lẻ
(x+ 1)( x-1) lẻ = 6y2 chẵn ( vô lý)
+) x+ 1 và x-1 chẵn
nx : tích của hai số chẵn liên tiếp chia hết 8
=> (x+ 1)(x-1) chia hết 8
=> 6y2 chia hết 8
=> 3y2 chia hết 4
do 3 kch 4
=> y2 chia hết 4
do y là snt => y=2
Từ (1) => (x+1)(x-1) = 6x 4 = (5+1)(5-1)
=> x=5
vậy ...
=>
(2x-1)(y+2)=-10
=> (2x-1),(y+2)€ Ư(-10)
(2x-1),(y+2)€ {-1;1;2;-2;5;-5;10;-10}
mà (2x-1) là số lẻ
nên (2x-1)€ {-1;1;5;-5}
với 2x-1=-1 thì y+2=10
2x= 0. y=10-2
x=0. y=8
với 2x-1=1 thì y+2=-10
2x=2. y=-10-2
x=1. y=-12
với 2x-1=5 thì y+2=-2
2x=6. y=-2-2
x=3. y=-4
với 2x-1=-5 thì y+2=2
2x=-4. thì y=2-2
x=-2. y=0