Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\frac{\sqrt{ab}-1}{3}=\frac{\sqrt{bc}-3}{9}=\frac{\sqrt{ca}-5}{-6}=t\)
\(\Rightarrow \left\{\begin{matrix} \sqrt{ab}=3t+1\\ \sqrt{bc}=9t+3\\ \sqrt{ca}=5-6t\end{matrix}\right.\)
\(\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6t+9\)
\(\Leftrightarrow 11=6t+9\Leftrightarrow t=\frac{1}{3}\)
Khi đó : \(\left\{\begin{matrix} \sqrt{ab}=2\\ \sqrt{bc}=6\\ \sqrt{ac}=3\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} ab=4\\ bc=36\\ ac=9\end{matrix}\right.\Rightarrow abc=\sqrt{4.36.9}=36\)
\(\Rightarrow \left\{\begin{matrix} c=\frac{abc}{ab}=9\\ a=\frac{abc}{bc}=1\\ b=\frac{abc}{ac}=4\end{matrix}\right.\)
Vậy....
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Lời giải:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)
\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)
\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)
\(\Rightarrow a=b=c\) (do $a,b,c>0$)
$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
Do \(a,b,c\ne0\)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)
\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{a}{ac}+\dfrac{c}{ac}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\b=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow M=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)
\(\dfrac{ab+1}{3}=\dfrac{bc+2}{8}=\dfrac{ca-1}{2}=\dfrac{ab+bc+ca+1+2-1}{3+8+2}=\dfrac{11+2}{13}=1\)
\(\Rightarrow\left\{{}\begin{matrix}ab+1=3\\bc+2=8\\ca-1=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab=2\\bc=6\\ca=3\end{matrix}\right.\)
\(\Rightarrow\left(abc\right)^2=36\)
\(\Rightarrow abc=6\) (vì a,b,c là số thực dương)
Mà \(ab=2\Rightarrow c=3\)
Tiếp \(bc=6\Rightarrow a=1;b=2\)
Vậy \(\left(a,b,c\right)=\left(1;2;3\right)\)