K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

Gọi A là vị trí thả vật

B là vị trí vật có động năng bằng 2 lần thế năng

Theo định luật bảo toàn cơ năng

Ta có: WA=WB

<=> WtA=\(\frac{Wđ_B}{2}\)

<=> 2.m.g.hA=\(\frac{1}{2}\).m.v2

<=>v2=400 <=> v=20 m/s (điều cần tìm).

12 tháng 6 2018

Đáp án D

NV
28 tháng 9 2019

Đặt hệ trục tọa độ Oxy vào cổng với gốc tọa độ trùng điểm chính giữa hai chân cổng

Gọi 2 chân cổng là A và B, điểm cao nhất là C, điểm có độ cao 43m là D

\(\Rightarrow A\left(-81;0\right)\) ; \(B\left(81;0\right)\); \(D\left(71;43\right)\)

Phương trình parabol có dạng \(y=ax^2+bx+c\)

Thay tọa độ A; B; C vào ta được hệ:

\(\left\{{}\begin{matrix}81^2.a-81b+c=0\\81^2a+81b+c=0\\71^2a+71b+c=43\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{43}{1520}\\b=0\\c=\frac{81^2.43}{1520}\end{matrix}\right.\)

\(\Rightarrow\) Độ cao cổng cũng là tung độ đỉnh C

\(\Rightarrow h=y_C=c\simeq185,6\left(m\right)\)

25 tháng 10 2019

D tại sao lại là 71 mà k phải là - 71 á bạn?

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Theo giả thiết ta có bất phương trình sau: \( - 4,9{t^2} + 10t + 1,6 > 7 \Leftrightarrow  - 4,9{t^2} + 10t - 5,4 > 0\)

Xét tam thức \(f\left( t \right) =  - 4,9{t^2} + 10t - 5,4\) có \(\Delta  =  - \frac{{146}}{{25}} < 0\) và \(a =  - 4,9 < 0\)

nên \(f\left( x \right)\) âm với mọi t, suy ra bât phương trình \( - 4,9{t^2} + 10t + 1,6 > 7\) vô nghiệm

vậy bóng không thể cao trên 7 m

b) Theo giả thiết ta có bất phương trình sau: \( - 4,9{t^2} + 10t + 1,6 > 5 \Leftrightarrow  - 4,9{t^2} + 10t - 3,4 > 0\)

Xét tam thức \(f\left( t \right) =  - 4,9{t^2} + 10t - 3,4\) có hai nghiệm phân biệt là \({t_1} \simeq 0,43;{t_2} \simeq 1,61\) và \(a =  - 4,9 < 0\)

nên \(f\left( t \right)\) dương khi t nằm trong khoảng \(\left( {0,43;1,61} \right)\)

Vậy khi t nằm trong khoảng \(\left( {0,43;1,61} \right)\)giây thì bóng ở độ cao trên 5 m