K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

A B C G M A' B' C' D E F H K N P

+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.

Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)

Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được

\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)

Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)

\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)

+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.

Áp dụng ĐL Thales, ta có các tỉ số: 

\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)

Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)

+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).

25 tháng 8 2017

A B C C, G M B, C, H D

TA CÓ

\(\frac{MC,}{GC,}=\frac{S\Delta AMB}{S\Delta AGB}\left(1\right)\)

\(\frac{MB,}{GB,}=\frac{S\Delta AMC}{S\Delta AGC}\left(2\right)\)

DỰNG GH VÀ MD VUÔNG GÓC VỚI BC

AD ĐỊNH LÍ TA LÉT

=>\(\frac{MD}{GH}=\frac{MA,}{GA,}\)

MẶT KHÁC \(\frac{MD}{GH}=\frac{S\Delta BMC}{S\Delta BGC}\)

=> \(\frac{MA,}{GA,}=\frac{S\Delta BMC}{S\Delta BGC}\left(3\right)\)

TỪ 1 ,2,3 

=> \(\frac{MA,}{GA,}+\frac{MB,}{GB,}+\frac{MC,}{GC,}=\frac{S\Delta AMB+S\Delta BMC+S\Delta AMC}{\frac{1}{3}S\Delta ABC}=\frac{3SABC}{SABC}=3\)

9 tháng 8 2016

a. Quang tự vẽ hình nhé.

Ta thấy \(\frac{AM}{AC}=\frac{AM}{AK}.\frac{AK}{AC}\). Mà theo định lý Ta let : \(\frac{AM}{AK}=\frac{AI}{AB};\frac{AK}{AC}=\frac{AN}{AI}\)

Như vậy thì \(\frac{AM}{AC}=\frac{AI}{AB}.\frac{AN}{AI}=\frac{AN}{AB}\)

Từ đó suy ra \(\frac{AM}{AC}=\frac{AN}{AB}\) hay MN // BC.

25 tháng 8 2017

Ôn tập Hệ thức lượng trong tam giác vuông

Em chỉ khuyến mại được cái hình thôi chứ bài thì em chịu do em chưa học tới!

25 tháng 8 2017

Câu hỏi của Phạm Thị Hằng - Toán lớp 9 - Học toán với OnlineMath

DD
17 tháng 5 2021

Bạn tham khảo ở phần câu hỏi tương tự nhé. 

https://olm.vn/hoi-dap/detail/191084232755.html

30 tháng 4 2020

A B C D E F M F' D' E' A' B' C' G

gọi 3 đường trung tuyến đó là AD,BE,CF.

Vẽ D',E',F' là hình chiếu của M trên BC,AC,AB.

Ta có : \(\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{MD'}{GD}+\frac{ME'}{GE}+\frac{MF'}{GF}\)

Đặt \(GD=GE=GF=\frac{h}{3}\)( h là chiều cao của tam giác )

\(\Rightarrow\frac{A'M}{A'G}+\frac{B'M}{B'G}+\frac{C'M}{C'G}=\frac{h}{\frac{h}{3}}=3\)