K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

dễ ẹc mượn cái máy tính làm cho

3 tháng 7 2016

Kết quả của dãy tính có chữ số tận cùng bằng 1 

t nha 

a/ 29 ; 47 ; 76

b/ 18 ; 25 ; 33 ; 42

c/ 120 ; 720 ; 5040

d/ 19 ; 22 ; 25

e/ 40 ; 74 ; 132

g/ 87 ; 1481 ; 128849

18 tháng 10 2019

bn có thể nói cách làm phần g cho mk được ko

18 tháng 10 2019

a) 1,3,4,7,11,18,29,47,76,...

b) 0,3,7,12,18,25,33,...

c) 1,2,6,24,120,720,5040,..

d) 1,4,7,10,13,16,19,22,25,...

e) 0,2,4,6,12,22,40,74,136,...

g) 1,2,3,5,17 ,.. ( bó tay )

xl.. Tại tớ ngu quá mà ...

a) 1, 3 , 4, 7, 11, 18, 29, 47, 76,...

b) 0, 3, 7, 12, 18, 25, 33, 42,...

d) 1, 4, 7, 10, 13, 16, 192225,...

3 tháng 7 2016

\(1991+1992+...+1998.\)

Tận cùng là chữ số 5 .

\(11+12+...+18+19\)

Tận cùng là chữ số 5.

mik nha !!!

3 tháng 7 2016

1991+1992+...+1998 tận cùng là chữ số 6 

11+12+...+18+19 tận cung là chữ số 5 

20 tháng 10 2016

30  49             80

tui chi giai duoc cau dau thui nhung h cho tui

20 tháng 10 2016

1 , 3 , 4 , 7 , 11 , 18 , 29 , 47 , 76 ( Quy luật : Số đằng sau bằng tổng hai số đằng trước )

0 , 2 , 4 , 6 , 12 , 22 , 40 , 74 , 136 ( Quy luật : Số đằng sau bằng tổng ba số đằng trước )

0 , 3 , 7 , 12 , 18 , 25 , 33 ( Quy luật : Số thứ hai cộng 3 , số thứ ba cộng 4 , số thứ tư cộng 5 , ... )

1 , 2 , 6 , 24 , 120 , 720 , 5040 ( Quy luật : Số thứ hai nhân 2 , số thứ ba nhân 3 , số thứ tư nhân 4 , ... )

12 tháng 6 2017

Ta có công thức tìm số chẵn(số lẻ) trong 1 dãy số cách đều:(Số lớn nhất - số bé nhất) : khoảng cách + 1

2 số chẵn liên tiếp hơn kém hau 2 đơn vị

a)Hiệu của số chẵn cuối cùng và 1996 là:

 (50 -  1) x 2 = 98

Số chẵn cuối cùng là:

 1996 + 98 = 2094

b) Hiệu của 2004 và số chẵn đầu tiên là:

   (96 - 1) x 2 = 190

Số chẵn đầu tiên là:

   2004 - 190 = 1814

c) Ta thấy dãy số này có khoảng cách là 3 đơn vị

Số nhỏ nhất có 1 chữ số khác 1 : 3 dư 1 là: 4

    Dãy số đó có số số hạng là:

        (100 - 4) : 3 + 1 = 33 (số)

   Số hạng thứ 10 là:

   100 - (10 - 1) x 3)  = 73 (tính 10 - 1 trước rồi nhân với 3)

  Số hạng thứ 17 là:

  100 - (17 - 1) x 3) = 52

  Số hạng thứ 27 là:

   100 - (27 - 1) x 3) = 22

           Đ/s:...   

  

12 tháng 6 2017

a) Vì đây là dãy 50 số chẵn liên tiếp nên khoảng cách giữa mỗi số hạng là 2 đơn vị

Số cuối cùng là:

1996 + 2 x (50 - 1) = 2094

b) Vì đây là dãy 96 số chẵn liên tiếp nên khoảng cách giữa mỗi số hạng là 2 đơn vị

Số đầu tiên của dãy là:

2004 - 2 x (96 - 1) = 1814

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.