Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co : \(3^{500}\&7^{300}\)
\(\Rightarrow3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\Rightarrow7^{300}=\left(7^3\right)^{100}=343^{100}\)
Ta thay \(243^{100}<343^{100}\)
Vay \(3^{500}<7^{300}\)
a)2300=(23)100=8100
3200=(32)100=9100
vì 8<9 nên 8100<9100
hay 2300<3200
b)212=24.3=(24)3=163
418=42.9=(42)9=169
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
Ta có\(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\)
Vậy\(3^{20}>2^{30}\)
a) 2x . 4 = 128
2x = 128 : 4
2x = 32
x = 32 : 2
x = 16
b)x . 17 = x
=> x = 0
2115 = (3.7)15 = 315. 715
275. 498 = ( 33)5 . (72)8 = 315. 716
=> 315. 715 < 315. 716
Vậy 2115 < 275 . 498
< Tíc mình nhé ! > Dương Thị Hoài
2115 = (3.7)15 = 315. 715
275. 498 = ( 33)5 . (72)8 = 315. 716
=> 315. 715 < 315. 716
Vậy 2115 < 275 . 498
3300 > 2300 ( vì 3 > 2 ).
3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
Vì 9^100 > 8^100
Vậy 3^200 > 2^300