Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
bài 1.
a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)
b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)
c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)
d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)
.bài 2
a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)
b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)
c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)
d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)
Trả lời:
Bài 1: Rút gọn biểu thức:
a) A = ( x - y )2 + ( x + y )2
= x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
b) B = ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
c) C = ( 2a + b )2 - ( 2a - b )2
= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )
= 4a2 + 4ab + b2 - 4a2 + 4ab - b2
= 8ab
d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4
= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4
= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4
= - 4x2 + 20x - 13
Bài 2: Rút gọn rồi tính giá trị biểu thức:
a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )
= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 )
= 2x2 + 6x - 2x2 + 4x + 16
= 10x + 16
Thay x = 1/2 vào A, ta có:
\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x
= 9x2 + 24x + 16 - x2 + 16 - 10x
= 8x2 + 14x + 32
Thay x = - 1/10 vào B, ta có:
\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )
= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )
= - 3x2 + 6x + 3x2 - 12
= 6x - 12
Thay x = 1 vào C, ta có:
\(C=6.1-12=-6\)
d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 )
= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x
= 4x - 5
Thay x = - 1 vào D, ta có:
\(D=4.\left(-1\right)-5=-9\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
bài 2
P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010
= (x3+1) + x - (x3-1) + 2010
= x3 + 1 + x - x3 + 1 + 2010
= x + 2 + 2010
= 2010 + 2 + 2010
=4022
Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5
= (4x)3-16.5x - [(4x)3+1]
= (4x)3 - 16.5x - (4x)3 - 1
= -16.5x - 1
= -16.5.1/5 - 1
= -16-1
=-17
a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41
<=> x3 - 33 - x(x2 - 42) = 41
<=> x3 - 27 - x3 + 16x = 41
<=> 16x = 68
<=> x= 4,25
b) (x+2)(x2-2x+4)-x(x2+2)=4
<=> x3 + 23 - x3 - 2x =4
<=> 8 - 2x = 4
<=> 2x = 4
<=> x= 1/2
a) A = (x+3)2 + (x-3)(x+3) - 2(x+2)(x - 4)
= (x + 3)(x + 3) + (x - 3)(x + 3) - 2[x(x - 4) + 2(x - 4)]
= x(x + 3) + 3(x + 3) + x(x + 3) - 3(x + 3) - 2[x2 - 4x + 2x - 8]
= x2 + 3x + 3x + 9 + x2 + 3x - 3x - 9 - 2(x2 - 2x - 8)
= x2 + 3x + 3x + 9 +x2 + 3x - 3x - 9 - 2x2 + 4x + 16
= (x2 + x2 - 2x2) + (3x + 3x + 3x - 3x + 4x) + (9 - 9 + 16) = 10x + 16
Thay x = -1/2 vào biểu thức trên ta có : \(10\cdot\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) \(B=\left(3x+4\right)^2-\left(x-4\right)\left(x+4\right)-10x\)
\(B=9x^2+24x+16-x\left(x+4\right)+4\left(x+4\right)-10x\)
\(B=9x^2+24x+16-x^2-4x+4x+16-10x\)
\(B=\left(9x^2-x^2\right)+\left(24x-4x+4x-10x\right)+\left(16+16\right)\)
\(B=8x^2+14x+32\)
Thay x = -1/10 vào biểu thức trên ta có : \(B=8\cdot\left(-\frac{1}{10}\right)^2+14\cdot\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) \(C=\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)
\(C=x^2+2x+1-\left(2x-1\right)\left(2x-1\right)+3\left(x^2-4\right)\)
\(C=x^2+2x+1-2x\left(2x-1\right)+1\left(2x-1\right)+3x^2-12\)
\(C=x^2+2x+1-4x^2+2x+2x-1+3x^2-12\)
\(C=\left(x^2-4x^2+3x^2\right)+\left(2x+2x+2x\right)+\left(1-1-12\right)\)
\(C=6x-12\)
Thay x = 1 vào biểu thức ta có : C = 6.1 - 12 = 6 -12 = -6
Còn bài kia làm nốt đi
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
1.\(\left(a+2\right)^2-\left(a+2\right)\left(a-2\right)\)
\(=a^2+4a+4-a^2+4\)
\(=4a+8\)
\(2.a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow x=3\)
\(b,16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2+40x-25=15\)
\(\Leftrightarrow x=1\)
\(3.P=\left(x+3\right)^2+\left(x+3\right)\left(x-3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)\)
\(=2x^2+6x-2x^2+4x+16\)
\(=10x+16\)
Thay x \(=-\frac{1}{2}\) vào P:
\(P=10.\frac{-1}{2}+16=11\)
Cám ơn chị nhiều nhiều luôn ! ^^