K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

bài 2 nè

a+b+c = 0

=>(a+b+c)^3 = 0

a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c) = 0

vì a+b = -c

a+c = -b

b+c = -a

thay vào => a^3 + b^3 + c^3 - 3abc = 0

=> a^3 + b^3 + c^3 = 3abc

1 tháng 11 2016

adsadfsa

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15

\(x^2+4x+3\)

\(=\left(x+1\right)\left(x+3\right)\)

\(2x^2+3x-5\)

\(\left(x-1\right)\left(x+\frac{5}{2}\right)\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

7 tháng 4 2020

Bài 2. 

a) x(x-2)-x+2=0

<=> x2-2x-x+2=0

<=> x2-3x+2=0

<=> x2-x-2x-2=0

<=> x(x-1)-2(x-1)=0

<=> (x-1)(x-2)=0 

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

b) x2(x2+1)-x2-1=0

<=> x4+x2-x2-1=0

<=> x4-1=0

<=> x4=1

<=> x=\(\pm\)1

2 tháng 8 2017

6,

=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]

=rồi nhóm hạng tử chung lại

=và sau đó tách ra bằng hằng đẳng thức 

kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)

              Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé ! 

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)