Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
1) Gọi thương của phép chia a chia cho 54 là q
Ta có a: 54 = q (dư 38) => a = 54q + 38
=> a = 18.3q + 18.2 + 2 = 18.(3q + 2) + 2
=> a chia cho 18 được thương là 3q + 2; dư 2
Theo bài cho 3q + 2 = 14 => 3q = 12 => q = 4
Vậy a = 54.4 + 38 = 254
2) Gọi số bị trừ là a; số trừ là b
a tận cùng là 3; Khi bỏ đi chữ số 3 ta được số b => a - 3 = 10b => a = 10b + 3
Theo bài cho: a - b = 57 => (10b + 3) - b = 57 => 10b - b = 57 - 3 => 9b = 54 => b = 6 => a = 6.10 + 3 = 63
Vậy hai số đó là 63; 6
Gọi số đó là a \(\left(a\in N\right)\)ta có :
a = 4k+3=5(k-2) +3
=5k-10+3 = 5k-7
\(\Rightarrow4k+3=5k-7\)
\(\Rightarrow4k+10=5k\)
\(\Rightarrow k=10\)
\(\Rightarrow k=43\)
Vậy số cần tìm là : 43
Chúc bạn học tốt !!!
1) K = D. 10 000 + Q
=> K-Q = D.10 000
=> 2015(K-Q) + 2016D = 2015.D.10 000 + 2016D =20152016.D
Vậy 2015(K-Q) + 2016D chia cho D = 20152016D:D = 20152016
2) \(A=\frac{\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right)}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\)
\(A=\frac{\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}\right)}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\)
\(=\frac{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=1\)