Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
Ta có
A = 8 x 3 – 12 x 2 y + 6 x y 2 – y 3 + 12 x 2 – 12 x y + 3 y 2 + 6 x – 3 y + 11 = ( 2 x ) 3 – 3 . ( 2 x ) 2 . y + 3 . 2 x . y - y 3 + 3 ( 4 x 2 – 4 x y + y 2 ) + 3 ( 2 x – y ) + 11 = ( 2 x – y ) 3 + 3 ( 2 x – y ) 2 + 3 ( 2 x – y ) + 1 + 10 = ( 2 x – y + 1 ) 3 + 10
Thay 2x – y = 9 vào A = ( 2 x – y + 1 ) 3 + 10 ta được
A = ( 9 + 1 ) 3 + 10 = 1010
Vậy A = 1010
Đáp án cần chọn là: C
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
a: \(A=\left(x+2y\right)^3=\left(-5\right)^3=-125\)
b: \(B=\left(2x-y\right)^3=\dfrac{1}{125}\)
c: \(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-3x\left(x^2-2x+1+x+1\right)\)
\(=6x^2+2-3x\left(2x^2-x+2\right)\)
\(=6x^2+2-6x^3+3x^2-6x\)
\(=-6x^3+9x^2-6x+2\)
1) \(\left(x+1\right)^2=x^2+2x+1\)
2) \(\left(2x+1\right)^2=4x^2+4x+1\)
3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)
4) \(\left(2x+3\right)^2=4x^2+12x+9\)
5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)
6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)
7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)
8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)
9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)
10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)
a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)
b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)
c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)
d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)
e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)
f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)
a) x2 - 4y2 tại x = 102 , y = \(\dfrac{1}{2}\)
= x2 - (2y)2
= (x - 2y)(x + 2y)
Thay x = 102 , y = \(\dfrac{1}{2}\) vào , ta có :
(x - 2y)(x + 2y)
= (102 - 2.\(\dfrac{1}{2}\))(102 + 2 . \(\dfrac{1}{2}\))
= 101 . 103
= 10403
b)Bạn xem lại đề b),c) có bị thiếu không, nên mình bổ sung thêm nhé :
8x3 + 12x2 + 6x + 1 tại x = \(\dfrac{29}{2}\)
= (2x)3 + 3.(2x2).1 + 3.2x.1 + 1
= (2x + 1)3
Thay x = \(\dfrac{29}{2}\) vào , ta có :
(2x + 1)3
= (2.\(\dfrac{29}{2}\) + 1)3
= (29 + 1)3
= 27000
c) x3 - 6x + 12x - 1 tại x = 102
= x3 - 3.x2.2 + 3.x.22 - 23
= (x - 2)3
Thay x = 102 vào , ta có :
(x - 2)3
= (102 - 2)3
= 1000000
Chúc bạn học tôt
a)8x3 + * + * + 27y3 = (* + *)3
=>A=(2x+3y)^3
b) (2x+1)^3
c)(x-2y)^3
d)(3x-2)(3x+2)
e)(3x-1)(9x^2+3x+1)
f)....................
6: \(27x^3+1=\left(3x+1\right)\left(9x^2-3x+1\right)\)
7: \(\left(2x+1\right)^2=4x^2+4x+1\)
8: \(\left(2x-1\right)^2=4x^2-4x+1\)
9: \(9-16x^2=\left(3-4x\right)\left(3+4x\right)\)
A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11
Ta có:
8x3 - 12x2y + 12xy2 - y3 = (2x - y)3 = 93 = 729
12x2 - 12xy + 3y2 = 4x2 - 4xy + y2 + 8x2 - 8xy + 2y2
= (2x - y)2 + 2 (4x2 - 4xy + y2)
= (2x - y)2 + 2(2x - y)2
= 92 + 2.92
= 243
6x - 3y = 3(2x - y) = 3.9 = 27
Vậy A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11 = 729 + 243 + 27 =999