Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\...\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\)
\(\Rightarrow11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\)
=\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}\)
\(=10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)
\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{11-10}{10.11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=10x+A=10x+\frac{10}{11}=11x\)
\(\Rightarrow\frac{10}{11}=11x-10x\)
\(\Rightarrow x=\frac{10}{11}\)
\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)
\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)
=> y<x
ta có : \(x\ne3\) để mẫu khác 0
Vì 2 phân số có cùng mẫu nên
\(\left|x-5\right|=\left|x-1\right|\)
*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)
\(x-5=x-1\)
\(0x=4\)
KHông có giá trị x
*TH2:
\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)
\(-\left(x-5\right)=-\left(x-1\right)\)
\(\Rightarrow-x-5=-x+1\)
\(0x=-4\)
Không có giá trị x
*TH3:
\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)
\(-\left(x-5\right)=x-1\)
\(\Rightarrow5+1=2x\)
\(\frac{6}{2}=x\)
\(x=3\)
Mà \(x\ne3\)
nên ko có giá trị thỏa mãn
vậy không có giá trị x nguyên thỏa mãn với đề bài
(3x/7 + 1) = - 1/8 . (-4)
3x/7 + 1 = 1/2
3x/7 = 1/2 - 1
3x/7 = -1/2
3x = -1/2 .7
3x= -7/2
x= -7/2 : 3 = -7/6
đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)
ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)
giải pt tìm ra x
đối chiếu với đk của bài ta suy ra đc nghiệm của pt
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008