K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2019

\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)

\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)

\(\Leftrightarrow\left(3x-y+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)

Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} 7(2x^3+3x^2y)=35\\ 5(y^3+6xy^2)=35\end{matrix}\right.\Rightarrow 14x^3+21x^2y-5y^3-30xy^2=0(1)\)

Nhận thấy $x,y\neq 0$ nên đặt \(x=ty(t\neq 0)\). Thay vào $(1)$ ta được:

\(14t^3y^3+21t^2y^3-5y^3-30ty^3=0\)

\(\Leftrightarrow 14t^3+21t^2-30t-5=0\Leftrightarrow (t-1)(14t^2+35t+5)=0\)

Nếu \(t=1\Rightarrow x=y\rightarrow 7y^3=7\Rightarrow y=1\rightarrow x=1\)

Nếu \(14t^2+35t+5=0\Rightarrow \left[ \begin{array}{ll}t=\frac{-35+3\sqrt{105}}{28} \\ \\ t=\frac{-35-3\sqrt{105}}{28}\end{array} \right.\)

Ta có \(y^3+6xy^2=y^3+6ty^3=7\Rightarrow y^3=\frac{7}{6t+1}\)

Thay vào ta tìm được \(\left[ \begin{array}{ll}y=\frac{7+\sqrt{105}}{4} \rightarrow x=\frac{5-\sqrt{105}}{8} \\ \\ y=\frac{7-\sqrt{105}}{4}\rightarrow x=\frac{5+\sqrt{105}}{8}\end{array} \right.\)

Ta có cặp nghiệm \((x,y)=(1,1),\left ( \frac{5+\sqrt{105}}{8},\frac{7-\sqrt{105}}{4} \right ),\left ( \frac{5-\sqrt{105}}{8},\frac{7+\sqrt{105}}{4} \right )\)

8 tháng 6 2017

Viết lại đề mình sẽ giải cho bạn <3 

6 tháng 5 2023

mọi người giúp với

 

24 tháng 11 2023

b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)

a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)

 

9 tháng 6 2017

Tối nay nhé !!!!!!!! 9/6/17 :v

9 tháng 6 2017

Hiện giờ phương trình này hệ không có nghiệm ^^
Xem lại đề bạn nhé ^^ 
Mình nghĩ cho số 5 kia vào trong căn thì có nghiệm là (x;y)=(0;0);(....) ^^
#Rau 

12 tháng 2 2017

3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)

Xét phương trình (2) ta có:

\(x^2+\left(y-3\right)x+y^2-4y+4=0\)

Để PT theo nghiệm x có nghiệm thì 

\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)

\(\Leftrightarrow-3y^2+10y-7\ge0\)

\(\Leftrightarrow1\le y\le\frac{7}{3}\)

\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)

Tương tự ta có:

\(0\le x\le\frac{4}{3}\)

\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)

Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm

11 tháng 2 2017

1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)

Xét phương trình đầu ta có

\(xy+x+y-x^2+2y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)

\(\Rightarrow x=1+2y\)

Thế vào pt dưới ta được

\(\sqrt{2y}\left(y+1\right)=2y+2\)

\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)

Tới đây tự làm tiếp nhé