Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó.
2.Qua một điểm nằm ngoài một đường thẳng ta vẽ được một và chỉ một đường thẳng song song với đường thẳng đã cho.
3.Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
4.Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ba đường thẳng đều song song.5.Đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại.
5. Dấu hiệu ( định lí ) nhận biết 2 đường thẳng song song:
+ Nếu đường thẳng c cắt hai đường thẳng a,b và trong các góc tạo thành có 1 cặp góc so le trong bằng nhau ( hoặc góc đồng vị bằng nhau ) thì a và b song song với nhau
6. Tiên đề Ơ - clit về đường thẳng song song:
Qua 1 điểm nằm ngoài đường thẳng chỉ có một đường thẳng song song với đường thẳng đó
7, Định lí về hài đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3
Nếu 2 đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3 thì chúng song song với nhau
8. Tính chất ( định lí ) của 2 đường thẳng song song:
Nếu 1 đường thẳng cắt 2 đường thẳng song song thì
1. Hai góc đồng vị bằng nhau
2. Hai góc so le trong bằng nhau
3. Hai góc trong cùng phía bù nhau
5. Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng song song.
\(\widehat{A_1}=\widehat{B}_1\Rightarrow a//b\)
- Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc đồng vị bằng nhau thì hai đường thẳng song song.
\(\widehat{A}_3=\widehat{B}_1\Rightarrow a//b\)
- Nếu hai đường thẳng cắt một đường thẳng thứ ba tạo thành một cặp góc trong cùng phía bù nhau thì hai đường thẳng song song.
\(\widehat{A}_2+\widehat{B}_1=180^0\Rightarrow a//b\)
Giả sử có 2 đường thẳng phân biệt a,b cùng vuông góc với một đường thẳng c.
Ta có: \(\widehat {{A_1}} = \widehat {{B_2}}(=90^0)\), mà hai góc này ở vị trí đồng vị nên a//b (Dấu hiệu nhận biết 2 đường thẳng song song)
Như vậy, định lí trên có thể được suy ra trực tiếp từ định lí về dấu hiệu nhận biết hai đường thẳng song song.
Câu 1:
Hai góc đối đỉnh là hai góc có chung đỉnh, và hai tia của góc này là hai tia đối của hai tia của góc kia
Tính chất: Hai góc đối đỉnh thì bằng nhau
Câu 1 :- định nghĩa : 2 góc đối đỉnh là 2 góc mà là mỗi cạnh của góc này là tia đối của một cạnh của góc kia
- tính chất : 2 góc đối đỉnh thì bằng nha
d:
Giả thiết: \(\widehat{xAy}\) và \(\widehat{x'Ay'}\) là hai góc đối đỉnh
Kết luận: \(\widehat{xAy}=\widehat{x'Ay'}\)
1: Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
2: Hai góc đối đỉnh thì bằng nhau.
3: Nếu đường thẳng xx',yy' cắt nhau và trong các góc tạo thành có một góc vuông được gọi là hai đường thẳng vuông góc và được kí hiệu là \(xx'\perp yy'\).
4: Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng ấy.
5: Nếu đường thẳng c cắt hai đường thẳng a,b và trong các góc tạo thành có một cặp góc so le trong bằng nhau ( hoặc một cặp góc đồng vị bằng nhau ) thì a và b song song với nhau.
6: Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó.
7: Nếu một đường thẳng cắt hai đường thẳng song song thì :
1: Hai góc so le trong bằng nhau.
2: Hai góc đồng vị bằng nhau.
3: Hai góc trong cùng phía bù nhau.
8: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
9: Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
10: Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
Chúc bạn học tốt!
1. Hai góc đối đỉnh:
Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
2.Định lí về hai góc đối đỉnh:
Hai góc đối đỉnh là hai góc mà mỗi cạnh là tia đối của một cạnh của góc kia .
Hai đường thẳng cắt nhau tại một điểm tạo thành hai cặp góc đối đỉnh.
tính chất Hai góc đối đỉnh thì bằng nhau.