K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

1) đề sai

2) \(A=\left|x-2016\right|+\left|x-2017\right|=\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2016+2017-x\right|=1\)

Dấu "=" xảy ra khi: \(2016\le x\le2017\)

19 tháng 12 2017

Những bài dạng ntn thất cậu làm nhanh vãi :)

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

10 tháng 3 2016

\(\frac{2017}{2018}\)

10 tháng 3 2016

2017 

2018

1 tháng 12 2018

123456789

1 tháng 12 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất

\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

dấu = xảy ra khi |x-2016|=0

=> x=2016

Vậy Min A=\(\frac{2017}{2018}\)khi x=2016

ps: sai sót bỏ qua 

19 tháng 3 2018

\(\left|x-2016\right|+2017\)

giá tị nhỏ nhất là  2017 vì  \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0 

mà ở ngoài lại là +2017  nên biểu thức có giá trj = 0  suy ra 0+2017 =2017

biểu thức tiếp 

= 2018

20 tháng 5 2021

 \(|x-2015|+|x-2016|+|x-2017|< =>\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)

=>\(\left|x-2105\right|+\left|2017-x\right|+\left|x-2016\right|\ge\left|x-2015+2017-x\right|+0=2+0=2\)

dấu '=' xảy ra <=>\(\left\{{}\begin{matrix}x=2016\\2015\le x\le2017\end{matrix}\right.\)<=>x=2016

vậy  giá trị nhỏ nhất của P=2 khi x=2016

 

 

20 tháng 5 2021

P = |x - 2015| + |x - 2016| + |x - 2017|
<=> P = |x - 2015| + |2017 - x| + |x - 2016|
Áp dụng BĐT |a| + | b| lớn hơn hoặc bằng |a + b| có :
|x - 2015| + |2017-x| + |x - 2016| lớn hơn hoặc bằng |x - 2015 + 2017 - x| + |x - 2016| = 2 + |x + 2016|
Dấu "=" xảy ra khi 
(x - 2015) (2017 - x) lớn hơn hoặc bằng 0
và |x - 2016| = 0 => x = 2016
Có : x - 2015 lớn hơn hoặc bằng 0 và 2017 - x lớn hơn hoặc bằng 0 
=> 2015 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2017 
-> x = 2016 (tm)
Vậy GTLN của P = 2 <=> x = 2016

1 tháng 10 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)

\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)

\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)

\(\Leftrightarrow\)\(x=2016\)

Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
25 tháng 1

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ (để cm BĐT này bạn có thể tìm trên mạng, rất nhiều)

$|x-2015|+|x-2017|=|x-2015|+|2017-x|\geq |x-2015+2017-x|=2$
$|x-2016|\geq 0$ theo tính chất trị tuyệt đối

$\Rightarrow P\geq 2+0=2$

Vậy $P_{\min}=2$. Giá trị này đạt được tại $(x-2015)(2017-x)\geq 0$ và $x-2016=0$

Hay $x=2016$

21 tháng 12 2016

Đặt M = |x + 2016| + x + 2017

Có: |x + 2016| >= -(x + 2016) = -x - 2016 với mọi x

M = |x + 2016| + x + 2017 >= -x- 2016 + x + 2017

M >= 1

Dấu "=" xảy ra khi x + 2016 <= 0

=> x <= -2016

Vậy...

21 tháng 12 2016

2017