Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)
\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)
\(=\frac{49}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)
\(\Rightarrow1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\frac{1}{27}\ge xyz\)
Ta có \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 )
Xét \(3\sqrt[3]{\frac{1}{64xyz}}\)
Ta có \(\frac{1}{27}\ge xyz\)
\(\Rightarrow\frac{64}{27}\ge64xyz\)
\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)
\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)
Vậy \(M_{min}=\frac{9}{4}\)
Ta có:
P = [(x-1)(x+6)] [(x+2)(x+30] = (x^2+5x-6)(x^2+5x+6)
= (x^2+5x)^2 - 6^2
= (x^2 + 5x)^2 - 36
=> Min P=-36 <=> x^2 = 5x..........( tứ diệp thảo tự tìm x nha)
ta có : n(n+5)−(n−3)(n+2)=n^2+5n−(n^2+2n−3n−6)
=n^2+5n−n^2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)chia hết cho 6 với mọi n là số nguyên (đpcm)
1/ đề sai vd: 2+3=5 là số nguyên tố
2/ \(4x^2-a^2+y^2-16b^2+4xy+8ab\)
\(=\left[\left(2x\right)^2+2.2xy+y^2\right]-\left[a^2+2.4ab-\left(4b\right)^2\right]\)
\(=\left(2x+y\right)^2-\left(a-4b\right)^2\)
\(=\left(2x+y+a-4b\right)\left(2x+y-a+4b\right)\)
3/
\(M=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+5x-x-5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x-5\right)\left(x^2+4x+5\right)\)
\(=\left(x^2+4x\right)^2-5^2\)
\(=\left(x^2+4x\right)^2-25\)
Vì \(\left(x^2+4x\right)^2\ge0\)
\(\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
\(\Rightarrow M\ge-25\)
Dấu "=" xảy ra khi x = 0 hoặc x = -4
Vậy Mmin = -25 khi x = 0 hoặc x = -4