Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=B\left(ĐPCM\right)\)
b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v
Chắc là bạn bị sai sót ở đâu đó chứ thế này thì khó mà tính được
Xin lỗi nha mình bị nhầm, đề bài phải là:
ChoA=1+21+22+23+24+25
1)Tính 2A
2)Chứng minh :A=26-1
Để tính tổng S = 1 + 3 + 3^2 + ... + 3^2006, ta sử dụng công thức tổng của cấp số nhân:
S = (3^(2007) - 1) / (3 - 1)
= (3^(2007) - 1) / 2
Để chứng minh 3B = (3^(2007) - 1)/2, ta thay B = S vào:
3B = 3 * (3^(2007) - 1) / 2
= (3^(2008) - 3)/2
= (3^(2008) - 1 - 2)/2
= (3^(2008) - 1)/2 - 1/2
= (3^(2007) - 1)/2 - 1/2
= (3^(2007) - 1) / 2
Do đó ta đã chứng minh được 3B = (3^(2007) - 1)/2.
\(A=1+2+2^2+.......+2^{2007}\Rightarrow2A=2+2^2+2^3+.........+2^{2008}\)
b) sai đề
c) dễ lắm
1/A=1.21.22.23.24.25 câu 2 làm tương tự
A.2=2.22.23.24.25.26
A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)
A=26-1
3 A=1+3+32+33+...37
3.A=3+32+33+34...+38
2A=38-1
A=(38-1):2