K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2n-2\right).2n}\)

                                                                 \(< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

                                                                \(< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

\(\Rightarrow\) \(A< \frac{1}{4}\)

Study well ! >_<

23 tháng 4 2019

Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)

         \(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)

Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)

 Ta có: \(\frac{1}{31}>\frac{1}{45}\)

           \(\frac{1}{32}>\frac{1}{45}\)

           ....................

          \(\frac{1}{45}=\frac{1}{45}\)

\(\Rightarrow B>\frac{1}{45}.15\)

\(\Rightarrow B>\frac{1}{3}\)

Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)

Ta có: \(\frac{1}{46}>\frac{1}{90}\)

           \(\frac{1}{47}>\frac{1}{90}\)

          .....................

         \(\frac{1}{90}=\frac{1}{90}\)

\(\Rightarrow C>\frac{1}{90}.45\)

\(\Rightarrow C>\frac{1}{2}\)

\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)

Hay \(A>\frac{5}{6}\left(1\right)\)

Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)

Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)

Ta có: \(\frac{1}{31}< \frac{1}{30}\)

          . ...................

           \(\frac{1}{59}< \frac{1}{30}\)

\(\Rightarrow D< \frac{1}{30}.60\)

\(\Rightarrow D< \frac{1}{2}\)

Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)

Ta có: \(\frac{1}{60}=\frac{1}{60}\)

             .................

          \(\frac{1}{90}< \frac{1}{60}\)

\(\Rightarrow E< \frac{1}{60}.31\)

\(\Rightarrow E< \frac{31}{60}< 1\)

\(\Rightarrow E< 1\)

\(\Rightarrow E+D< 1+\frac{1}{2}\)

Hay \(A< \frac{3}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)

23 tháng 4 2019

Mình làm hơi ngáo có gì thì cứ nói 

9 tháng 5 2019

\(D=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)\)

\(=\left(1+1+1+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)

\(=4-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}\right)\)

\(=4-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)

\(=4-\left(1-\frac{1}{5}\right)=4-\frac{4}{5}=\frac{16}{5}\)

9 tháng 5 2019

\(D=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}\)

\(D=\left(1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\right)\)

\(D=4-\frac{4}{5}\)

\(D=\frac{16}{5}\)

28 tháng 12 2018

1) Có: \(2n+7=2(n+1)+5\)

Mà \(2\left(n+1\right)⋮n+1\)

\(\Rightarrow5⋮n+1\Rightarrow n+1\inƯ\left(5\right)\left\{1;5\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=5\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=4\end{cases}}}\)

Vậy \(n\in\left\{0;4\right\}\) thoả mãn

2) Có: \(n+6=\left(n+2\right)+4\)

Mà \(n+2⋮n+2\Rightarrow4⋮n+2\Rightarrow n+2\inƯ\left\{4\right\}=\left\{1;2;4\right\}\)

\(\Rightarrow+n+2=4\Rightarrow n=2\)

       \(+n+2=2\Rightarrow n=0\)

       \(+n+2=1\Rightarrow n=-1\)

Vì \(n\inℕ\Rightarrow n\in\left\{2;0\right\}\)

_Thi tốt_

29 tháng 12 2018

có 2n+1 chia hết cho n+1

=> n+n+1 chia hết cho n+1

=>n+1+n+1-1 chia hết cho n+1

=>2.[n+1] chia hết cho n+1

mà 2.[n+1] chia hết cho n+1

=> -1 chia hết cho n+1

=>n+1 thuộc Ư[-1]

=>n+1 thuộc {1 và -1}

=>n thuộc {0 và -2}

Vậy n thuộc {0 va -2}
 

27 tháng 12 2018

nhanh lên nha mk mai thi r

27 tháng 12 2018

mik chỉ giúp câu 2 đc thôi cong câu 1 thì mik có bài tương tự

 1.

tìm số nguyên a để 2n+3 chia hết cho n-2

bài giải

ta có 2n=3 chia hết cho n-2

suy ra 2(n-2) + 7 chia hết cho n-2

suy ra n-2 thuộc Ư(7)={1:7}

ta có bảng giá trị

n-217
n39
đối chiếuthỏa mãnthỏa mãn

vậy suy ra n=3 hoặc n =9

2. giải

từ 1 đến 9 có số  chữ số là

(9-1):1+1x1= 9(c/s)   [nhân 1 vì mỗi số có 1 c/s]

từ 10 dến 99 có scs ( số chữ số) là

(99-10):1+1x2=180(scs)

từ  100 đến 350 có scs là

(350-100):1+1x3=253(scs)

cần sủa dụng scs để đánh  số các trang sách là

9+180+253=442 (scs)

vậy cần 442 scs để dánh dấu các trang sách

23 tháng 6 2020

ai giải giúp mình nhanh với

24 tháng 6 2020

\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)

\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)

\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)  \((1)\)

\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)

\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}\)

\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\)   \((2)\)

Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)

Học tốt

Nhớ kết bạn với mình

6 tháng 5 2018

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\) ta có : 

\(A=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.n^2}\)

\(A=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{n^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{2^2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)< \frac{1}{2^2}.1\)

\(A< \frac{1}{2^2}=\frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

Chúc bạn học tốt ~ 

6 tháng 5 2018

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)

\(=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{\left(2n-2\right)\cdot2n}\)

\(=\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{\left(2n-2\right)\cdot2n}\right)\cdot\frac{1}{2}\)

\(=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\cdot\frac{1}{2}\)

\(=\left(\frac{1}{2}-\frac{1}{2n}\right)\cdot\frac{1}{2}=\frac{1}{4}-\frac{1}{2n\cdot2}< 1\)

\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)

Y
28 tháng 3 2019

\(3B=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(B=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4B=3B+B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

+ Đặt \(M=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3M=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(\Rightarrow4M=3M+M=3-\frac{1}{3^{99}}\)

\(\Rightarrow M=\frac{3}{4}-\frac{1}{3^{99}\cdot4}\)

\(\Rightarrow4B=M-\frac{100}{3^{100}}=\frac{3}{4}-\frac{1}{3^{99}\cdot4}-\frac{100}{3^{100}}\)

\(\Rightarrow B=\frac{3}{16}-\frac{1}{3^{99}\cdot16}-\frac{100}{3^{100}\cdot4}\) \(\Rightarrow B< \frac{3}{16}\)

Y
28 tháng 3 2019

a) \(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(\Rightarrow3A=2A+A=1-\frac{1}{2^6}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{2^6\cdot3}< \frac{1}{3}\) ( đpcm )