Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có : \(x-3y=5\Rightarrow x=3y+5\)
Thay vào biểu thức A ta được :
\(A=\left(3y+5\right)\left(3y+5-9y+1\right)+3y\left(3y+5+3y-1\right)-2\)
\(=\left(3y+5\right)\left(-6y+6\right)+3y\left(6y+4\right)-2\)
\(=3y\left(-6y+6\right)+5\left(-6y+6\right)+18y^2+12y-2\)
\(=-18y^2+18y-30y+30+18y^2+12y-2\)
\(=30-2=28\)
Vậy : \(A=28\) khi \(x-3y=5\)
1
\(A=x\left(x-9y+1\right)+3y\left(x+3y-1\right)-2\)
\(A=x^2-9xy+x+3xy+9y^2-3y-2\)
\(A=x^2-6xy+9y^2+x-3y-2\)
\(A=\left(x-3y\right)^2+\left(x-2y\right)-2\)
\(A=25-5-2=18\)
bạn kia lm sai r thì phải.nếu đúng thì cho sorry
Bài 4:
Ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)
\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)
3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)
nếu ta dùng cách rút gọn biểu thức thì ta có kết quả
A=(8a-8)x2+(2a-2)x-15a+15
còn nếu sử dụng cách Phân tích thành nhân tử thì ta sẽ có kết quả là
A=(a-1)(2x+3)(4x-5)
(tự xét )
B = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y
hc tốt
tớ chỉ biết làm phần B thôi
B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y
phần A tương tự
\(A=(x+3y)(x^2-3xy+9y^2)+3y(x+3y)(x-3y)-x(3xy+x^2-5)-5x+1\\A=(x+3y)[x^2-x\cdot3y+(3y)^2]+3y[x^2-(3y)^2]-3x^2y-x^3+5x-5x+1\\A=x^3+(3y)^3+3y(x^2-9y^2)-3x^2y-x^3+1\\A=x^3+27y^3+3x^2y-27y^3-3x^2y-x^3+1\\A=1\)$\Rightarrow$ Giá trị của $A$ không phụ thuộc vào giá trị của biến.
Lời giải:
Sửa đề đoạn $x-3y$ thành $x+3y$
$A=x^3+(3y)^3+3y(x^2-9y^2)-(3x^2y+7x^2-7x)$
$=x^3+27y^3+3x^2y-27y^3-3x^2y-7x^2+7x$
$=x^3-7x^2+7x$ không phụ thuộc vào giá trị của biến $y$ (đpcm).
b.
Khi $x=-1$ thì:
$A=(-1)^3-7(-1)^2+7(-1)=-1-7-7=-15$
giải
A=(3x-5)(2x+11)-(2x+3)(3x+7)
=6x^2+33x-10x-55-(6x^2+14x+9x+21)
=6x^2+33x-10x-55-6x^2-14x-9x-21
= -76
vậy biểu thức không phụ thuộc vào biến x,y
B=(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
vậy biểu thức không phụ thuộc vào biến x
\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)
\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)
Câu 1:
\(A=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(A=x^3+x^2+x-x^3-x^2-x+5\)
\(A=5\)
Vậy GT A ko phụ thuộc vào biến
B đề sai
Còn câu 2 mk ko hiêu g hết
A = x^3+x^2+x - x^3-x^2-x+5
A= ( x^3-x^3 ) + ( x^2 - x^2)+ ( x -x ) +5
A=0+0+0+5
A=5
Vậy giá trị của biểu thức bằng 5 không phụ thuộc vào giá trị của x .
Biểu thức B , làm tương tự nhé !!!